Proceedings of the Institute for System Programming of the RAS
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of ISP RAS:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Proceedings of the Institute for System Programming of the RAS, 2019, Volume 31, Issue 2, Pages 21–32
DOI: https://doi.org/10.15514/ISPRAS-2019-31(2)-2
(Mi tisp406)
 

This article is cited in 3 scientific papers (total in 3 papers)

Virtual Savant for the knapsack problem: learning for automatic resource allocation

R. Massobrioab, B. Dorronsoro Díaza, S. E. Nesmachnow Cánovasb

a Universidad de Cádiz
b Universidad de la República
Full-text PDF (636 kB) Citations (3)
References:
Abstract: This article presents the application of Virtual Savant to solve resource allocation problems, a widely-studied area with several real-world applications. Virtual Savant is a novel soft computing method that uses machine learning techniques to compute solutions to a given optimization problem. Virtual Savant aims at learning how to solve a given problem from the solutions computed by a reference algorithm, and its design allows taking advantage of modern parallel computing infrastructures. The proposed approach is evaluated to solve the Knapsack Problem, which models different variant of resource allocation problems, considering a set of instances with varying size and difficulty. The experimental analysis is performed on an Intel Xeon Phi many-core server. Results indicate that Virtual Savant is able to compute accurate solutions while showing good scalability properties when increasing the number of computing resources used.
Keywords: virtual savant, machine learning, parallel computing, resource allocation, knapsack problem, many-core.
Funding agency Grant number
Ministerio de Economía y Competitividad de España TIN2014-60844-R
RYC-2013-13355
ANII, Uruguay
PEDECIBA, Uruguay
Fundación Carolina, Spain
The work of Renzo Massobrio and Sergio Nesmachnow is partly supported by ANII and PEDECIBA, Uruguay. The work of Renzo Massobrio is partly supported by Fundación Carolina, Spain. Bernabé Dorronsoro acknowledges the Spanish MINECO and ERDF for the support provided under contracts TIN2014-60844-R (the SAVANT project) and RYC-2013-13355.
Bibliographic databases:
Document Type: Article
Language: English
Citation: R. Massobrio, B. Dorronsoro Díaz, S. E. Nesmachnow Cánovas, “Virtual Savant for the knapsack problem: learning for automatic resource allocation”, Proceedings of ISP RAS, 31:2 (2019), 21–32
Citation in format AMSBIB
\Bibitem{MasDorNes19}
\by R.~Massobrio, B.~Dorronsoro D{\'\i}az, S.~E.~Nesmachnow C{\' a}novas
\paper Virtual Savant for the knapsack problem: learning for automatic resource allocation
\jour Proceedings of ISP RAS
\yr 2019
\vol 31
\issue 2
\pages 21--32
\mathnet{http://mi.mathnet.ru/tisp406}
\crossref{https://doi.org/10.15514/ISPRAS-2019-31(2)-2}
\elib{https://elibrary.ru/item.asp?id=38469685}
Linking options:
  • https://www.mathnet.ru/eng/tisp406
  • https://www.mathnet.ru/eng/tisp/v31/i2/p21
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Proceedings of the Institute for System Programming of the RAS
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025