Proceedings of the Institute for System Programming of the RAS
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of ISP RAS:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Proceedings of the Institute for System Programming of the RAS, 2022, Volume 34, Issue 3, Pages 61–74
DOI: https://doi.org/10.15514/ISPRAS-2022-34(3)-5
(Mi tisp693)
 

This article is cited in 1 scientific paper (total in 1 paper)

Method for convolutional neural network hardware implementation based on a residue number system

M. V. Valuevaa, G. V. Valueva, M. G. Babenkobc, A. N. Tchernykhdec, J. M. Cortés-Mendozae

a North-Caucasus Center for Mathematical Research NCFU
b North-Caucasus Federal University
c Ivannikov Institute for System Programming of the RAS
d Centro de Investigación Científica y de Educación Superior de Ensenada
e South Ural State University
Full-text PDF (641 kB) Citations (1)
Abstract: Convolutional Neural Networks (CNN) show high accuracy in pattern recognition solving problem but have high computational complexity, which leads to slow data processing. To increase the speed of CNN, we propose a hardware implementation method with calculations in the residue number system with moduli of a special type $2^\alpha$ and $2^\alpha-1$. A hardware simulation of the proposed method on Field-Programmable Gate Array for LeNet-5 CNN is trained with the MNIST, FMNIST, and CIFAR-10 image databases. It has shown that the proposed approach can increase the clock frequency and performance of the device by 11%-12%, compared with the traditional approach based on the positional number system.
Keywords: convolutional neural network, residue number system, pattern recognition, field-programmable gate array (FPGA)
Funding agency Grant number
Russian Science Foundation 19-71-10033
This work was supported in part by the Russian Science Foundation, project number 19-71-10033
Document Type: Article
Language: Russian
Citation: M. V. Valueva, G. V. Valuev, M. G. Babenko, A. N. Tchernykh, J. M. Cortés-Mendoza, “Method for convolutional neural network hardware implementation based on a residue number system”, Proceedings of ISP RAS, 34:3 (2022), 61–74
Citation in format AMSBIB
\Bibitem{ValValBab22}
\by M.~V.~Valueva, G.~V.~Valuev, M.~G.~Babenko, A.~N.~Tchernykh, J.~M.~Cort\'es-Mendoza
\paper Method for convolutional neural network hardware implementation based on a residue number system
\jour Proceedings of ISP RAS
\yr 2022
\vol 34
\issue 3
\pages 61--74
\mathnet{http://mi.mathnet.ru/tisp693}
\crossref{https://doi.org/10.15514/ISPRAS-2022-34(3)-5}
Linking options:
  • https://www.mathnet.ru/eng/tisp693
  • https://www.mathnet.ru/eng/tisp/v34/i3/p61
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Proceedings of the Institute for System Programming of the RAS
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025