Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2005, Volume 248, Pages 262–274 (Mi tm136)  

This article is cited in 4 scientific papers (total in 4 papers)

Greedy Algorithms with Restricted Depth Search

V. N. Temlyakov

University of South Carolina
Full-text PDF (219 kB) Citations (4)
References:
Abstract: We continue to study the efficiency of approximation and the convergence of greedy-type algorithms in uniformly smooth Banach spaces. This paper is a development of the author's two recent papers on making practical algorithms out of theoretical approximation methods. The weak Chebyshev greedy algorithm (WCGA) has been introduced and studied in previous works. The WCGA is a general approximation method that works well in an arbitrary uniformly smooth Banach space $X$ for any dictionary $\mathcal D$. It is an inductive procedure with each step of implementation consisting of several substeps. We describe the first substep of a particular case of the WCGA. Let $t\in (0,1]$. Then, at the first substep of the $m$th step, we look for an element $\varphi _m$ from a given symmetric dictionary $\mathcal D$ that satisfies $F_{f_{m-1}}(\varphi _m)\ge t\sup _{g\in \mathcal D} F_{f_{m-1}}(g)$, where $f_{m-1}$ is a residual after the $(m-1)$th step and $F_{f_{m-1}}$ is a norming functional of $f_{m-1}$. This is a greedy step of the WCGA. It is clear that in the case of an infinite dictionary $\mathcal D$, there is no direct computationally feasible way of evaluating $\sup _{g\in \mathcal D}F_{f_{m-1}}(g)$. This is the main issue that we address in the paper. We consider countable dictionaries $\mathcal D=\{\pm \psi _j\}_{j=1}^\infty$ and replace the inequality used above by $F_{f_{m-1}}(\varphi _m)\ge t\sup _{1\le j\le N_m}|F_{f_{m-1}}(\psi _j)|$, $\varphi _m\in \{\pm \psi _j\}_{j=1}^{N_m}$. The restriction $j\le N_m$ is known in the literature as the depth search condition. We prove convergence and rate-of-convergence results for such a modification of the WCGA.
Received in September 2004
Bibliographic databases:
UDC: 517.52.2+519.651
Language: Russian
Citation: V. N. Temlyakov, “Greedy Algorithms with Restricted Depth Search”, Studies on function theory and differential equations, Collected papers. Dedicated to the 100th birthday of academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 248, Nauka, MAIK «Nauka/Inteperiodika», M., 2005, 262–274; Proc. Steklov Inst. Math., 248 (2005), 255–267
Citation in format AMSBIB
\Bibitem{Tem05}
\by V.~N.~Temlyakov
\paper Greedy Algorithms with Restricted Depth Search
\inbook Studies on function theory and differential equations
\bookinfo Collected papers. Dedicated to the 100th birthday of academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2005
\vol 248
\pages 262--274
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm136}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2165933}
\zmath{https://zbmath.org/?q=an:1148.41034}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2005
\vol 248
\pages 255--267
Linking options:
  • https://www.mathnet.ru/eng/tm136
  • https://www.mathnet.ru/eng/tm/v248/p262
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:536
    Full-text PDF :171
    References:83
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025