Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Volume 255, Pages 146–160 (Mi tm259)  

This article is cited in 4 scientific papers (total in 4 papers)

Lieb–Thirring Integral Inequalities and Sharp Bounds for the Dimension of the Attractor of the Navier–Stokes Equations with Friction

A. A. Ilyin

M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
Full-text PDF (228 kB) Citations (4)
References:
Abstract: A two-dimensional Navier–Stokes system with friction is considered in a large rectangular periodic domain with area on the order of $\alpha^{-1}$, $\alpha \to 0$. Bounds for the dimension of the attractor are obtained, which are sharp both as $\alpha\to 0$ and $\nu\to 0$, where $\nu$ is the viscosity coefficient.
Received in May 2005
English version:
Proceedings of the Steklov Institute of Mathematics, 2006, Volume 255, Pages 136–149
DOI: https://doi.org/10.1134/S0081543806040110
Bibliographic databases:
UDC: 517.953
Language: Russian
Citation: A. A. Ilyin, “Lieb–Thirring Integral Inequalities and Sharp Bounds for the Dimension of the Attractor of the Navier–Stokes Equations with Friction”, Function spaces, approximation theory, and nonlinear analysis, Collected papers, Trudy Mat. Inst. Steklova, 255, Nauka, MAIK «Nauka/Inteperiodika», M., 2006, 146–160; Proc. Steklov Inst. Math., 255 (2006), 136–149
Citation in format AMSBIB
\Bibitem{Ily06}
\by A.~A.~Ilyin
\paper Lieb--Thirring Integral Inequalities and Sharp Bounds for the Dimension of the Attractor of the Navier--Stokes Equations with Friction
\inbook Function spaces, approximation theory, and nonlinear analysis
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2006
\vol 255
\pages 146--160
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm259}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2301615}
\elib{https://elibrary.ru/item.asp?id=13522627}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2006
\vol 255
\pages 136--149
\crossref{https://doi.org/10.1134/S0081543806040110}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846892516}
Linking options:
  • https://www.mathnet.ru/eng/tm259
  • https://www.mathnet.ru/eng/tm/v255/p146
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025