Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2013, Volume 280, Pages 53–66
DOI: https://doi.org/10.1134/S0371968513010044
(Mi tm3447)
 

This article is cited in 71 scientific papers (total in 71 papers)

On the Schrödinger maximal function in higher dimension

J. Bourgain

Institute for Advanced Study, Princeton, NJ, USA
References:
Abstract: New estimates on the maximal function associated to the linear Schrödinger equation are established. It is shown that the almost everywhere convergence property of $e^{it\Delta}f$ for $t\to0$ holds for $f\in H^s(\mathbb R^n)$, $s>\frac12-\frac1{4n}$, which is a new result for $n\geq3$. We also construct examples showing that $s\geq\frac12-\frac1n$ is certainly necessary when $n\geq4$. This is a further contribution to our understanding of how L. Carleson's result for $n=1$ generalizes in higher dimension. From the methodological point of view, crucial use is made of J. Bourgain and L. Guth's results and techniques that are based on the multi-linear oscillatory integral theory developed by J. Bennett, T. Carbery and T. Tao.
Received in January 2012
English version:
Proceedings of the Steklov Institute of Mathematics, 2013, Volume 280, Pages 46–60
DOI: https://doi.org/10.1134/S0081543813010045
Bibliographic databases:
Document Type: Article
UDC: 517.95+517.44
Language: English
Citation: J. Bourgain, “On the Schrödinger maximal function in higher dimension”, Orthogonal series, approximation theory, and related problems, Collected papers. Dedicated to Academician Boris Sergeevich Kashin on the occasion of his 60th birthday, Trudy Mat. Inst. Steklova, 280, MAIK Nauka/Interperiodica, Moscow, 2013, 53–66; Proc. Steklov Inst. Math., 280 (2013), 46–60
Citation in format AMSBIB
\Bibitem{Bou13}
\by J.~Bourgain
\paper On the Schr\"odinger maximal function in higher dimension
\inbook Orthogonal series, approximation theory, and related problems
\bookinfo Collected papers. Dedicated to Academician Boris Sergeevich Kashin on the occasion of his 60th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2013
\vol 280
\pages 53--66
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3447}
\crossref{https://doi.org/10.1134/S0371968513010044}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3241836}
\elib{https://elibrary.ru/item.asp?id=18893029}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2013
\vol 280
\pages 46--60
\crossref{https://doi.org/10.1134/S0081543813010045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320459700004}
\elib{https://elibrary.ru/item.asp?id=21889388}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876453780}
Linking options:
  • https://www.mathnet.ru/eng/tm3447
  • https://doi.org/10.1134/S0371968513010044
  • https://www.mathnet.ru/eng/tm/v280/p53
  • This publication is cited in the following 71 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:1082
    Full-text PDF :257
    References:141
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025