Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2013, Volume 282, Pages 315–335
DOI: https://doi.org/10.1134/S0371968513030217
(Mi tm3498)
 

Random $A$-permutations and Brownian motion

A. L. Yakymiv

Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We consider a random permutation $\tau _n$ uniformly distributed over the set of all degree $n$ permutations whose cycle lengths belong to a fixed set $A$ (the so-called $A$-permutations). Let $X_n(t)$ be the number of cycles of the random permutation $\tau _n$ whose lengths are not greater than $n^t$, $t\in[0,1]$, and $l(t)=\sum_{i\leq t,i\in A}1/i$, $t>0$. In this paper, we show that the finite-dimensional distributions of the random process $\{Y_n(t)=(X_n(t)-l(n^t))/\sqrt{\varrho\ln n}$, $t\in[0,1]\}$ converge weakly as $n\to\infty$ to the finite-dimensional distributions of the standard Brownian motion $\{W(t),t\in[0,1]\}$ in a certain class of sets $A$ of positive asymptotic density $\varrho$.
Received in March 2012
English version:
Proceedings of the Steklov Institute of Mathematics, 2013, Volume 282, Pages 298–318
DOI: https://doi.org/10.1134/S0081543813060217
Bibliographic databases:
Document Type: Article
UDC: 519.212.2+519.218.1
Language: Russian
Citation: A. L. Yakymiv, “Random $A$-permutations and Brownian motion”, Branching processes, random walks, and related problems, Collected papers. Dedicated to the memory of Boris Aleksandrovich Sevastyanov, corresponding member of the Russian Academy of Sciences, Trudy Mat. Inst. Steklova, 282, MAIK Nauka/Interperiodica, Moscow, 2013, 315–335; Proc. Steklov Inst. Math., 282 (2013), 298–318
Citation in format AMSBIB
\Bibitem{Yak13}
\by A.~L.~Yakymiv
\paper Random $A$-permutations and Brownian motion
\inbook Branching processes, random walks, and related problems
\bookinfo Collected papers. Dedicated to the memory of Boris Aleksandrovich Sevastyanov, corresponding member of the Russian Academy of Sciences
\serial Trudy Mat. Inst. Steklova
\yr 2013
\vol 282
\pages 315--335
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3498}
\crossref{https://doi.org/10.1134/S0371968513030217}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3308597}
\elib{https://elibrary.ru/item.asp?id=20280561}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2013
\vol 282
\pages 298--318
\crossref{https://doi.org/10.1134/S0081543813060217}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325961800021}
\elib{https://elibrary.ru/item.asp?id=21883258}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84885963925}
Linking options:
  • https://www.mathnet.ru/eng/tm3498
  • https://doi.org/10.1134/S0371968513030217
  • https://www.mathnet.ru/eng/tm/v282/p315
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025