Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2002, Volume 239, Pages 170–178 (Mi tm366)  

This article is cited in 2 scientific papers (total in 2 papers)

An Infinite Series of Perfect Quadratic Forms and Big Delaunay Simplices in $\mathbb Z^n$

R. M. Erdahla, K. A. Rybnikovb

a Queen's University
b Cornell University
Full-text PDF (194 kB) Citations (2)
References:
Abstract: G. Voronoi (1908–09) introduced two important reduction methods for positive quadratic forms, the reduction with perfect forms and the reduction with $L$-type domains. A form is perfect if it can be reconstructed from all representations of its arithmetic minimum. Two forms have the same $L$-type if the Delaunay tilings of their lattices are affinely equivalent. Delaunay (1937–38) asked about possible relative volumes of lattice Delaunay simplices. We construct an infinite series of Delaunay simplices of relative volume $n-3$, the best known up to now. This series gives rise to an infinite series of perfect forms with remarkable properties (e.g. $\tau_{5}\sim D_{5}\sim\phi _{2}^{5}$, $\tau _{6}\sim E_{6}^{\ast }$, and $\tau _{7}\sim \varphi _{15}^{7}$); for all $n$, the domain of $\tau _{n}$ is adjacent to the domain of $D_{n}$, the $2$nd perfect form. The perfect form $\tau _{n}$ is a direct $n$-dimensional generalization of the Korkine and Zolotareff $3$rd perfect form $\phi _{2}^{5}$ in five variables. We prove that $\tau _{n}$ is equivalent to the Anzin (1991) form $h_{n}$.
Received in March 2002
Bibliographic databases:
UDC: 511.9+514.174
Language: English
Citation: R. M. Erdahl, K. A. Rybnikov, “An Infinite Series of Perfect Quadratic Forms and Big Delaunay Simplices in $\mathbb Z^n$”, Discrete geometry and geometry of numbers, Collected papers. Dedicated to the 70th birthday of professor Sergei Sergeevich Ryshkov, Trudy Mat. Inst. Steklova, 239, Nauka, MAIK «Nauka/Inteperiodika», M., 2002, 170–178; Proc. Steklov Inst. Math., 239 (2002), 159–167
Citation in format AMSBIB
\Bibitem{ErdRyb02}
\by R.~M.~Erdahl, K.~A.~Rybnikov
\paper An Infinite Series of Perfect Quadratic Forms and Big Delaunay Simplices in~$\mathbb Z^n$
\inbook Discrete geometry and geometry of numbers
\bookinfo Collected papers. Dedicated to the 70th birthday of professor Sergei Sergeevich Ryshkov
\serial Trudy Mat. Inst. Steklova
\yr 2002
\vol 239
\pages 170--178
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm366}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1975142}
\zmath{https://zbmath.org/?q=an:1126.11324}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2002
\vol 239
\pages 159--167
Linking options:
  • https://www.mathnet.ru/eng/tm366
  • https://www.mathnet.ru/eng/tm/v239/p170
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025