Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Volume 300, Pages 216–228
DOI: https://doi.org/10.1134/S0371968518010181
(Mi tm3869)
 

This article is cited in 3 scientific papers (total in 3 papers)

Flow structure behind a shock wave in a channel with periodically arranged obstacles

V. A. Shargatova, A. P. Chugainovab, S. V. Gorkunova, S. I. Sumskoia

a National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow, 115409 Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
References:
Abstract: We study the propagation of a pressure wave in a rectangular channel with periodically arranged obstacles and show that a flow corresponding to a discontinuity structure may exist in such a channel. The discontinuity structure is a complex consisting of a leading shock wave and a zone in which pressure relaxation occurs. The pressure at the end of the relaxation zone can be much higher than the pressure immediately behind the gas-dynamic shock. We derive an approximate formula that relates the gas parameters behind the discontinuity structure to the average velocity of the structure. The calculations of the pressure, velocity, and density of the gas behind the structure that are based on the average velocity of the structure agree well with the results of gas-dynamic calculations. The approximate dependences obtained allow us to estimate the minimum pressure at which there exists a flow with a discontinuity structure. This estimate is confirmed by gas-dynamic calculations.
Keywords: attenuation of a shock wave, channel with obstacles, traveling wave, interaction of a shock/blast wave with barriers.
Funding agency Grant number
Russian Science Foundation 16-19-00188
This work is supported by the Russian Science Foundation under grant 16-19-00188.
Received: October 25, 2017
English version:
Proceedings of the Steklov Institute of Mathematics, 2018, Volume 300, Pages 206–218
DOI: https://doi.org/10.1134/S0081543818010182
Bibliographic databases:
Document Type: Article
UDC: 533.6.011.72
Language: Russian
Citation: V. A. Shargatov, A. P. Chugainova, S. V. Gorkunov, S. I. Sumskoi, “Flow structure behind a shock wave in a channel with periodically arranged obstacles”, Modern problems and methods in mechanics, Collected papers. On the occasion of the 110th anniversary of the birth of Academician Leonid Ivanovich Sedov, Trudy Mat. Inst. Steklova, 300, MAIK Nauka/Interperiodica, Moscow, 2018, 216–228; Proc. Steklov Inst. Math., 300 (2018), 206–218
Citation in format AMSBIB
\Bibitem{ShaChuGor18}
\by V.~A.~Shargatov, A.~P.~Chugainova, S.~V.~Gorkunov, S.~I.~Sumskoi
\paper Flow structure behind a~shock wave in a~channel with periodically arranged obstacles
\inbook Modern problems and methods in mechanics
\bookinfo Collected papers. On the occasion of the 110th anniversary of the birth of Academician Leonid Ivanovich Sedov
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 300
\pages 216--228
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3869}
\crossref{https://doi.org/10.1134/S0371968518010181}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3801049}
\elib{https://elibrary.ru/item.asp?id=32659289}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 300
\pages 206--218
\crossref{https://doi.org/10.1134/S0081543818010182}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000433127500018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047513121}
Linking options:
  • https://www.mathnet.ru/eng/tm3869
  • https://doi.org/10.1134/S0371968518010181
  • https://www.mathnet.ru/eng/tm/v300/p216
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:346
    Full-text PDF :99
    References:67
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025