|
|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2003, Volume 241, Pages 254–264
(Mi tm399)
|
|
|
|
On the Conjectures of Artin and Shafarevich–Tate
S. G. Tankeev Vladimir State University
Abstract:
For an arithmetic model $\pi\colon X\to\operatorname{Spec}A$ of a smooth projective variety $V$ over a number field $k$, the interrelations between the conjecture of Artin about the finiteness of $\mathrm{Br}(X)$ and the conjecture of Shafarevich–Tate about the finiteness of $\text{III}(\operatorname {Spec}A,\mathrm{Pic}^0(V))$ are studied.
Received in November 2002
Citation:
S. G. Tankeev, “On the Conjectures of Artin and Shafarevich–Tate”, Number theory, algebra, and algebraic geometry, Collected papers. Dedicated to the 80th birthday of academician Igor' Rostislavovich Shafarevich, Trudy Mat. Inst. Steklova, 241, Nauka, MAIK «Nauka/Inteperiodika», M., 2003, 254–264; Proc. Steklov Inst. Math., 241 (2003), 238–248
Linking options:
https://www.mathnet.ru/eng/tm399 https://www.mathnet.ru/eng/tm/v241/p254
|
| Statistics & downloads: |
| Abstract page: | 443 | | Full-text PDF : | 152 | | References: | 86 |
|