Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2019, Volume 307, Pages 319–327
DOI: https://doi.org/10.4213/tm4044
(Mi tm4044)
 

This article is cited in 3 scientific papers (total in 3 papers)

Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points

A. I. Shafarevichabcd

a Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia
b Moscow Institute of Physics and Technology (State University), Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141701 Russia
c Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, pr. Vernadskogo 101-1, Moscow, 119526 Russia
d National Research Center “Kurchatov Institute,” pl. Akademika Kurchatova 1, Moscow, 123182 Russia
References:
Abstract: Semiclassical spectral series of the Laplace operator on a two-dimensional surface of revolution with a conical point are described. It is shown that in many cases asymptotic eigenvalues can be calculated from the quantization conditions on special Lagrangian tori, with the Maslov index of such tori being replaced by a real invariant expressed in terms of the cone apex angle.
Funding agency Grant number
Russian Science Foundation 16-11-10069
This work is supported by the Russian Science Foundation under grant 16-11-10069.
Received: June 1, 2019
Revised: June 12, 2019
Accepted: August 31, 2019
English version:
Proceedings of the Steklov Institute of Mathematics, 2019, Volume 307, Pages 294–302
DOI: https://doi.org/10.1134/S008154381906018X
Bibliographic databases:
Document Type: Article
UDC: 515.168
Language: Russian
Citation: A. I. Shafarevich, “Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points”, Algebra, number theory, and algebraic geometry, Collected papers. Dedicated to the memory of Academician Igor Rostislavovich Shafarevich, Trudy Mat. Inst. Steklova, 307, Steklov Mathematical Institute of RAS, Moscow, 2019, 319–327; Proc. Steklov Inst. Math., 307 (2019), 294–302
Citation in format AMSBIB
\Bibitem{Sha19}
\by A.~I.~Shafarevich
\paper Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points
\inbook Algebra, number theory, and algebraic geometry
\bookinfo Collected papers. Dedicated to the memory of Academician Igor Rostislavovich Shafarevich
\serial Trudy Mat. Inst. Steklova
\yr 2019
\vol 307
\pages 319--327
\publ Steklov Mathematical Institute of RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4044}
\crossref{https://doi.org/10.4213/tm4044}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4070073}
\elib{https://elibrary.ru/item.asp?id=43263840}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 307
\pages 294--302
\crossref{https://doi.org/10.1134/S008154381906018X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000520962900018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082045142}
Linking options:
  • https://www.mathnet.ru/eng/tm4044
  • https://doi.org/10.4213/tm4044
  • https://www.mathnet.ru/eng/tm/v307/p319
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:405
    Full-text PDF :188
    References:56
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025