Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2020, Volume 308, Pages 210–221
DOI: https://doi.org/10.4213/tm4079
(Mi tm4079)
 

This article is cited in 3 scientific papers (total in 3 papers)

Linear Pfaffian Systems and Classical Solutions of Triangular Schlesinger Equations

V. P. Leksin

State University of Humanities and Social Studies, ul. Zelenaya 30, Kolomna, Moscow oblast, 140411 Russia
Full-text PDF (231 kB) Citations (3)
References:
Abstract: In this paper, by classical solutions we mean solutions to Fuchsian type meromorphic linear integrable Pfaffian systems $\mathrm d y=\Omega y$ on the complex linear spaces $\mathbb C^n$, $n\geq 1$, where $y(z) = (y_1(z),\dots ,y_n(z))^\top \in \mathbb C^n$ is a column vector and $\Omega $ is a meromorphic matrix differential $1$-form such that $\Omega =\sum _{1\leq i<j\leq n}J_{ij}(\beta )(z_i-z_j)^{-1}\,\mathrm d(z_i-z_j)$, with constant matrix coefficients $J_{ij}(\beta )$ depending on complex parameters $\beta =(\beta _1,\dots ,\beta _n)$. Under some constraints on the constant matrix coefficients $J_{ij}(\beta )$, the solution components $y_i(z)$, $1\leq i\leq n$, can be expressed as integrals of products of powers of linear functions; i.e., they are generalizations of the integral representation of the classical hypergeometric function $F(z,a,b,c)$. Moreover, under some additional constraints on the parameters $\beta $, the components of the solutions are hyperelliptic, superelliptic, or polynomial functions. We describe such constraints on the coefficients $J_{ij}(\beta )$ of Fuchsian type systems, as well as describe constraints on the sets of matrices $(B_1(z),\dots ,B_n(z))$ for which the nonlinear Schlesinger equations $\mathrm dB_i(z)=-\sum _{j=1,\,j\neq i}^n[B_i(z),B_j(z)](z_i-z_j)^{-1}\,\mathrm d(z_i-z_j)$ reduce to linear integrable Pfaffian systems of the type described above and have solutions of the indicated type.
Funding agency Grant number
Russian Foundation for Basic Research 16-51-150005
This work was supported by the Russian Foundation for Basic Research, project no. 16-51-150005.
Received: April 9, 2019
Revised: August 15, 2019
Accepted: December 24, 2019
English version:
Proceedings of the Steklov Institute of Mathematics, 2020, Volume 308, Pages 196–207
DOI: https://doi.org/10.1134/S0081543820010150
Bibliographic databases:
Document Type: Article
UDC: 517.952+517.552
Language: Russian
Citation: V. P. Leksin, “Linear Pfaffian Systems and Classical Solutions of Triangular Schlesinger Equations”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 308, Steklov Math. Inst. RAS, Moscow, 2020, 210–221; Proc. Steklov Inst. Math., 308 (2020), 196–207
Citation in format AMSBIB
\Bibitem{Lek20}
\by V.~P.~Leksin
\paper Linear Pfaffian Systems and Classical Solutions of Triangular Schlesinger Equations
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2020
\vol 308
\pages 210--221
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4079}
\crossref{https://doi.org/10.4213/tm4079}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4101852}
\elib{https://elibrary.ru/item.asp?id=43283216}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2020
\vol 308
\pages 196--207
\crossref{https://doi.org/10.1134/S0081543820010150}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000535370800015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085321570}
Linking options:
  • https://www.mathnet.ru/eng/tm4079
  • https://doi.org/10.4213/tm4079
  • https://www.mathnet.ru/eng/tm/v308/p210
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025