Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Volume 315, Pages 172–181
DOI: https://doi.org/10.4213/tm4224
(Mi tm4224)
 

Control Theory, Integral Matrices, and Orthogonal Polynomials

A. I. Ovseevich

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow
References:
Abstract: In control theory and approximation theory, there naturally arise matrices which are the inverses of the Gram matrices for the monomial basis in the space of square integrable functions with respect to a measure. For example, such a matrix arises in the problem of finite time feedback stabilization of a linear system, and in the Hilbert problem on the minimal $L_2$-norm of an integral polynomial. We show in a series of examples that the above inverse matrix is integral and has a large divisor. Our method is based on the arithmetic study of orthogonal polynomials naturally associated with the problem.
Keywords: control of linear systems, feedback control, Hilbert matrix, orthogonal polynomials.
Funding agency Grant number
Russian Science Foundation 21-11-00151
The work was supported by the Russian Science Foundation under grant 21-11-00151.
Received: December 18, 2020
Revised: March 31, 2021
Accepted: July 14, 2021
English version:
Proceedings of the Steklov Institute of Mathematics, 2021, Volume 315, Pages 161–170
DOI: https://doi.org/10.1134/S0081543821050126
Bibliographic databases:
Document Type: Article
UDC: 517.587+517.977.1
Language: Russian
Citation: A. I. Ovseevich, “Control Theory, Integral Matrices, and Orthogonal Polynomials”, Optimal Control and Differential Games, Collected papers, Trudy Mat. Inst. Steklova, 315, Steklov Math. Inst., Moscow, 2021, 172–181; Proc. Steklov Inst. Math., 315 (2021), 161–170
Citation in format AMSBIB
\Bibitem{Ovs21}
\by A.~I.~Ovseevich
\paper Control Theory, Integral Matrices, and Orthogonal Polynomials
\inbook Optimal Control and Differential Games
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 315
\pages 172--181
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4224}
\crossref{https://doi.org/10.4213/tm4224}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 315
\pages 161--170
\crossref{https://doi.org/10.1134/S0081543821050126}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000745120000012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123365802}
Linking options:
  • https://www.mathnet.ru/eng/tm4224
  • https://doi.org/10.4213/tm4224
  • https://www.mathnet.ru/eng/tm/v315/p172
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025