Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Volume 315, Pages 128–150
DOI: https://doi.org/10.4213/tm4235
(Mi tm4235)
 

Abstract McKean–Vlasov and Hamilton–Jacobi–Bellman Equations, Their Fractional Versions and Related Forward–Backward Systems on Riemannian Manifolds

V. N. Kolokoltsovab, M. S. Troevac

a Department of Statistics, University of Warwick, Coventry, UK
b National Research University "Higher School of Economics", Moscow
c North-Eastern Federal University named after M. K. Ammosov
References:
Abstract: We introduce a class of abstract nonlinear fractional pseudo-differential equations in Banach spaces that includes both the McKean–Vlasov type equations describing nonlinear Markov processes and the Hamilton–Jacobi–Bellman–Isaacs equation of stochastic control and games. This allows for a unified analysis of these equations, which leads to an effective theory of coupled forward–backward systems (forward McKean–Vlasov evolution and backward Hamilton–Jacobi–Bellman–Isaacs evolution) that are central to the modern theory of mean-field games.
Keywords: Fractional McKean–Vlasov type equations on manifolds, fractional Hamilton–Jacobi–Bellman–Isaacs equations on manifolds, fractional forward–backward systems on manifolds, dual Banach triples, mild solutions, Caputo–Dzherbashyan fractional derivative, smoothing and smoothness preserving operator semigroups.
Funding agency Grant number
Russian Science Foundation 20-11-20119
Ministry of Science and Higher Education of the Russian Federation FSRG-2020-0006
The work of V. N. Kolokoltsov (Sections 1–7) was supported by the Russian Science Foundation under grant no. 20-11-20119. The work of M. S. Troeva (Sections 8–10) was supported by the Ministry of Science and Higher Education of the Russian Federation (grant no. FSRG-2020-0006).
Received: February 24, 2021
Revised: April 14, 2021
Accepted: July 30, 2021
English version:
Proceedings of the Steklov Institute of Mathematics, 2021, Volume 315, Pages 118–139
DOI: https://doi.org/10.1134/S0081543821050096
Bibliographic databases:
Document Type: Article
UDC: 517.955+517.968.4+517.986.7
Language: Russian
Citation: V. N. Kolokoltsov, M. S. Troeva, “Abstract McKean–Vlasov and Hamilton–Jacobi–Bellman Equations, Their Fractional Versions and Related Forward–Backward Systems on Riemannian Manifolds”, Optimal Control and Differential Games, Collected papers, Trudy Mat. Inst. Steklova, 315, Steklov Math. Inst., Moscow, 2021, 128–150; Proc. Steklov Inst. Math., 315 (2021), 118–139
Citation in format AMSBIB
\Bibitem{KolTro21}
\by V.~N.~Kolokoltsov, M.~S.~Troeva
\paper Abstract McKean--Vlasov and Hamilton--Jacobi--Bellman Equations, Their Fractional Versions and Related Forward--Backward Systems on Riemannian Manifolds
\inbook Optimal Control and Differential Games
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 315
\pages 128--150
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4235}
\crossref{https://doi.org/10.4213/tm4235}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 315
\pages 118--139
\crossref{https://doi.org/10.1134/S0081543821050096}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000745120000009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123379195}
Linking options:
  • https://www.mathnet.ru/eng/tm4235
  • https://doi.org/10.4213/tm4235
  • https://www.mathnet.ru/eng/tm/v315/p128
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025