Abstract:
We show that for every continuous function $f$ there exists an absolutely continuous circle homeomorphism $\phi $ such that the Fourier series of $f\circ \phi $ converges uniformly. This resolves a problem posed by N. N. Luzin.
Citation:
Gady Kozma, Alexander Olevskiǐ, “Luzin's Problem on Fourier Convergence and Homeomorphisms”, Approximation Theory, Functional Analysis, and Applications, Collected papers. On the occasion of the 70th birthday of Academician Boris Sergeevich Kashin, Trudy Mat. Inst. Steklova, 319, Steklov Math. Inst., Moscow, 2022, 134–181; Proc. Steklov Inst. Math., 319 (2022), 124–168