Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2024, Volume 325, Pages 297–308
DOI: https://doi.org/10.4213/tm4396
(Mi tm4396)
 

Floquet–Bloch Functions on Non-simply Connected Manifolds, the Aharonov–Bohm Fluxes, and Conformal Invariants of Immersed Surfaces

I. A. Taimanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
References:
Abstract: We define spectral (Bloch) varieties of multidimensional differential operators on non-simply connected manifolds. In their terms we give a description of the analytic dependence of the spectra of magnetic Laplacians on non-simply connected manifolds on the values of the Aharonov–Bohm fluxes, construct analogs of spectral curves for two-dimensional Dirac operators on Riemann surfaces, and thereby find new conformal invariants of immersions of surfaces into three- and four-dimensional Euclidean spaces.
Keywords: differential operators with periodic coefficients, Floquet–Bloch varieties, non-simply connected manifolds, Schrödinger operator, Dirac operator.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-281
The work was supported by the Mathematical Center in Akademgorodok, agreement with the Ministry of Science and Higher Education of the Russian Federation no. 075-15-2022-281.
Received: February 4, 2024
Revised: February 26, 2024
Accepted: March 20, 2024
Published: 09.09.2024
English version:
Proceedings of the Steklov Institute of Mathematics, 2024, Volume 325, Pages 280–291
DOI: https://doi.org/10.1134/S0081543824020160
Bibliographic databases:
Document Type: Article
UDC: 517.984+514.76
Language: Russian
Citation: I. A. Taimanov, “Floquet–Bloch Functions on Non-simply Connected Manifolds, the Aharonov–Bohm Fluxes, and Conformal Invariants of Immersed Surfaces”, Geometry, Topology, and Mathematical Physics, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 85th birthday, Trudy Mat. Inst. Steklova, 325, Steklov Mathematical Institute of RAS, Moscow, 2024, 297–308; Proc. Steklov Inst. Math., 325 (2024), 280–291
Citation in format AMSBIB
\Bibitem{Tai24}
\by I.~A.~Taimanov
\paper Floquet--Bloch Functions on Non-simply Connected Manifolds, the Aharonov--Bohm Fluxes, and Conformal Invariants of Immersed Surfaces
\inbook Geometry, Topology, and Mathematical Physics
\bookinfo Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 85th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2024
\vol 325
\pages 297--308
\publ Steklov Mathematical Institute of RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4396}
\crossref{https://doi.org/10.4213/tm4396}
\zmath{https://zbmath.org/?q=an:07939074}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2024
\vol 325
\pages 280--291
\crossref{https://doi.org/10.1134/S0081543824020160}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85207485022}
Linking options:
  • https://www.mathnet.ru/eng/tm4396
  • https://doi.org/10.4213/tm4396
  • https://www.mathnet.ru/eng/tm/v325/p297
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025