Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2024, Volume 327, Pages 63–78
DOI: https://doi.org/10.4213/tm4405
(Mi tm4405)
 

On Diffeomorphisms with Orientable Codimension 1 Basic Sets and an Isolated Saddle

V. Z. Grines, E. V. Zhuzhomaa, V. S. Medvedeva

a HSE University – Nizhny Novgorod, Nizhny Novgorod, Russia
References:
Abstract: We consider the class $\mathbb {G}_k^{\textup {diff}}(M^n;0,0,1)$ of diffeomorphisms $f: M^n\to M^n$ of a closed orientable $n$-manifold $M^n$, $n\geq 3$, that satisfy Smale's axiom A whose nonwandering set $\mathrm {NW}(f)$ consists of the following basic sets: (a) $k\geq 1$ nontrivial basic sets each of which is either an orientable connected expanding codimension $1$ attractor or an orientable connected contracting codimension $1$ repeller; (b) exactly one trivial basic set, an isolated saddle, whose separatrices do not intersect. For diffeomorphisms in $\mathbb {G}_k^{\textup {diff}}(M^n;0,0,1)$, we construct a certain equipped graph that gives a complete global conjugacy invariant on their nonwandering sets. We also describe the topological structure of the supporting manifolds $M^n$ for diffeomorphisms in the class $\mathbb {G}_k^{\textup {diff}}(M^n;0,0,1)$, $n\geq 3$, $n\neq 4$, $k\geq 2$.
Keywords: basic set, global conjugacy, attractor.
Funding agency Grant number
HSE Basic Research Program
Russian Science Foundation 22-11-00027
The work of the second author (Section 2) was supported by the Russian Science Foundation under grant no. 22-11-00027, https://rscf.ru/en/project/22-11-00027/. The other part of the research was carried out within the framework of the HSE University Basic Research Program.
Received: January 20, 2024
Revised: August 10, 2024
Accepted: December 30, 2024
Published: 12.03.2025
English version:
Proceedings of the Steklov Institute of Mathematics, 2024, Volume 327, Pages 55–69
DOI: https://doi.org/10.1134/S0081543824060051
Bibliographic databases:
Document Type: Article
UDC: 517.938
Language: Russian
Citation: V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, “On Diffeomorphisms with Orientable Codimension 1 Basic Sets and an Isolated Saddle”, Mathematical Aspects of Mechanics, Collected papers. Dedicated to Dmitry Valerevich Treschev on the occasion of his 60th birthday and to Sergey Vladimirovich Bolotin on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 327, Steklov Math. Inst., Moscow, 2024, 63–78; Proc. Steklov Inst. Math., 327 (2024), 55–69
Citation in format AMSBIB
\Bibitem{GriZhuMed24}
\by V.~Z.~Grines, E.~V.~Zhuzhoma, V.~S.~Medvedev
\paper On Diffeomorphisms with Orientable Codimension 1 Basic Sets and an Isolated Saddle
\inbook Mathematical Aspects of Mechanics
\bookinfo Collected papers. Dedicated to Dmitry Valerevich Treschev on the occasion of his 60th birthday and to Sergey Vladimirovich Bolotin on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2024
\vol 327
\pages 63--78
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4405}
\crossref{https://doi.org/10.4213/tm4405}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2024
\vol 327
\pages 55--69
\crossref{https://doi.org/10.1134/S0081543824060051}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105001526483}
Linking options:
  • https://www.mathnet.ru/eng/tm4405
  • https://doi.org/10.4213/tm4405
  • https://www.mathnet.ru/eng/tm/v327/p63
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025