Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2024, Volume 326, Pages 15–25
DOI: https://doi.org/10.4213/tm4411
(Mi tm4411)
 

Complex Cobordism Modulo $c_1$-Spherical Cobordism and Related Genera

Malkhaz Bakuradze

Faculty of Exact and Natural Sciences, A. Razmadze Mathematical Institute, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
References:
Abstract: We prove that the ideal in the complex cobordism ring $\mathbf {MU}^*$ generated by the polynomial generators $S=(x_1,x_k,\,k\geq 3)$ of the $c_1$-spherical cobordism ring $W^*$, viewed as elements in $\mathbf {MU}^*$ by the forgetful map, is prime. Using the Baas–Sullivan theory of cobordism with singularities, we define a commutative complex oriented cohomology theory $\mathbf {MU}^*_S(-)$, complex cobordism modulo $c_1$-spherical cobordism, with the coefficient ring $\mathbf {MU}^*/S$. Then any $\Sigma \subseteq S$ is also regular in $\mathbf {MU}^*$ and therefore gives a multiplicative complex oriented cohomology theory $\mathbf {MU}^*_{\Sigma }(-)$. The generators of $W^*[1/2]$ can be specified in such a way that for $\Sigma =(x_k,\,k\geq 3)$ the corresponding cohomology is identical to the Abel cohomology previously constructed by Ph. Busato. Another example corresponding to $\Sigma =(x_k,\,k\geq 5)$ gives the coefficient ring of the universal Buchstaber formal group law after being tensored by $\mathbb Z[1/2]$, i.e., is identical to the scalar ring of the Krichever–Höhn complex elliptic genus.
Keywords: complex bordism, SU-bordism, formal group law, complex elliptic genus.
Funding agency Grant number
Shota Rustaveli National Science Foundation FR-23-779
German Academic Exchange Service (DAAD) 57655523
The work was supported by the Shota Rustaveli NSF grant FR-23-779 and by the EU fellowships for Georgian researchers, 2023 (57655523).
Received: October 24, 2023
Revised: April 29, 2024
Accepted: June 6, 2024
Published: 25.12.2024
English version:
Proceedings of the Steklov Institute of Mathematics, 2024, Volume 326, Pages 11–20
DOI: https://doi.org/10.1134/S0081543824040023
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Malkhaz Bakuradze, “Complex Cobordism Modulo $c_1$-Spherical Cobordism and Related Genera”, Topology, Geometry, Combinatorics, and Mathematical Physics, Collected papers. Dedicated to Victor Matveevich Buchstaber on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 326, Steklov Math. Inst., Moscow, 2024, 15–25; Proc. Steklov Inst. Math., 326 (2024), 11–20
Citation in format AMSBIB
\Bibitem{Bak24}
\by Malkhaz~Bakuradze
\paper Complex Cobordism Modulo $c_1$-Spherical Cobordism and Related Genera
\inbook Topology, Geometry, Combinatorics, and Mathematical Physics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2024
\vol 326
\pages 15--25
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4411}
\crossref{https://doi.org/10.4213/tm4411}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2024
\vol 326
\pages 11--20
\crossref{https://doi.org/10.1134/S0081543824040023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-86000264715}
Linking options:
  • https://www.mathnet.ru/eng/tm4411
  • https://doi.org/10.4213/tm4411
  • https://www.mathnet.ru/eng/tm/v326/p15
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025