Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2024, Volume 326, Pages 173–192
DOI: https://doi.org/10.4213/tm4441
(Mi tm4441)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Cohomology of Projective Unitary Groups

Haibao Duanab

a Yau Mathematical Sciences Center, Tsinghua University, Beijing, 100084, China
b Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
Full-text PDF (385 kB) Citations (1)
References:
Abstract: The projective unitary group $\mathrm {PU}(n)$ is the quotient of the unitary group $\mathrm {U}(n)$ by its center $S^1=\{e^{i\theta }I_n: \theta \in [0,2\pi ]\}$, where $I_n$ is the identity matrix. Combining the Serre spectral sequence of the fibration $\mathrm {PU}(n)\to \mathrm {PU}(n)/T$ with the Gysin sequence of the circle bundle $\mathrm {U}(n)\to \mathrm {PU}(n)$, we compute the integral cohomology ring of $\mathrm {PU}(n)$ using explicitly constructed generators, where $T$ is a maximal torus of $\mathrm {PU}(n)$.
Keywords: Lie groups, cohomology, Serre spectral sequence, Gysin sequence.
Funding agency Grant number
National Natural Science Foundation of China 12331003
This work was supported by the National Science Foundation of China, project no. 12331003.
Received: November 22, 2023
Revised: July 12, 2024
Accepted: August 13, 2024
Published: 25.12.2024
English version:
Proceedings of the Steklov Institute of Mathematics, 2024, Volume 326, Pages 157–176
DOI: https://doi.org/10.1134/S0081543824040084
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Haibao Duan, “The Cohomology of Projective Unitary Groups”, Topology, Geometry, Combinatorics, and Mathematical Physics, Collected papers. Dedicated to Victor Matveevich Buchstaber on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 326, Steklov Math. Inst., Moscow, 2024, 173–192; Proc. Steklov Inst. Math., 326 (2024), 157–176
Citation in format AMSBIB
\Bibitem{Dua24}
\by Haibao~Duan
\paper The Cohomology of Projective Unitary Groups
\inbook Topology, Geometry, Combinatorics, and Mathematical Physics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2024
\vol 326
\pages 173--192
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4441}
\crossref{https://doi.org/10.4213/tm4441}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2024
\vol 326
\pages 157--176
\crossref{https://doi.org/10.1134/S0081543824040084}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-86000231602}
Linking options:
  • https://www.mathnet.ru/eng/tm4441
  • https://doi.org/10.4213/tm4441
  • https://www.mathnet.ru/eng/tm/v326/p173
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025