Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2025, Volume 329, Pages 40–55
DOI: https://doi.org/10.4213/tm4459
(Mi tm4459)
 

On the Classification of Smooth Toric Surfaces with Exactly One Exceptional Curve

V. V. Batyrev

Fachbereich Mathematik, Universität Tuübingen, Auf der Morgenstelle 10, 72076 Tuübingen, Germany
References:
Abstract: We classify all smooth projective toric surfaces containing exactly one exceptional curve. We show that every such surface is isomorphic to either $\mathbb F_1$ or a surface $S_r$ defined by a rational number $r\in \mathbb Q\setminus \mathbb Z$ ($r>1$). If $a:=[r]$ then $S_r$ is obtained from the minimal desingularization of the weighted projective plane $\mathbb P(1,2,2a+1)$ by a sequence of blow-ups of length equal to the level of the rational number $\{r\}\in (0,1)$ in the classical Farey tree. We show that if $r = b/c$ with coprime $b$ and $c$, then $S_r$ is the minimal desingularization of the weighted projective plane $\mathbb P(1,c,b)$. We apply the two-dimensional regular fans $\Sigma _r$ of toric surfaces $S_r$ to construct two-dimensional colored fans $\Sigma _r^{\textup {c}}$ of minimal horospherical threefolds $V_r$ having a regular $(\mathrm {SL}(2)\times \mathbb G_{\textup {m}})$-action. The varieties $V_r$ are toric and minimal. Their classification was obtained by D. Guan. We establish a direct combinatorial connection between the three-dimensional fans $\widetilde {\Sigma }^{\textup {c}}_r$ of threefolds $V_r$ and the two-dimensional fans $\Sigma _r$ of surfaces $S_r$.
Keywords: toric varieties, horospherical varieties.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FSMG-2023-0013
The work is supported by the state assignment of MIPT (project FSMG-2023-0013).
Received: December 7, 2024
Revised: March 3, 2025
Accepted: March 19, 2025
Published: 03.09.2025
English version:
Proceedings of the Steklov Institute of Mathematics, 2025, Volume 329, Pages 33–47
DOI: https://doi.org/10.1134/S0081543825600632
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. V. Batyrev, “On the Classification of Smooth Toric Surfaces with Exactly One Exceptional Curve”, Birational Geometry and Fano Varieties, Collected papers. Dedicated to Yuri Gennadievich Prokhorov on the occasion of his 60th birthday, Trudy Mat. Inst. Steklova, 329, Steklov Math. Inst., Moscow, 2025, 40–55; Proc. Steklov Inst. Math., 329 (2025), 33–47
Citation in format AMSBIB
\Bibitem{Bat25}
\by V.~V.~Batyrev
\paper On the Classification of Smooth Toric Surfaces with Exactly One Exceptional Curve
\inbook Birational Geometry and Fano Varieties
\bookinfo Collected papers. Dedicated to Yuri Gennadievich Prokhorov on the occasion of his 60th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2025
\vol 329
\pages 40--55
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4459}
\crossref{https://doi.org/10.4213/tm4459}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2025
\vol 329
\pages 33--47
\crossref{https://doi.org/10.1134/S0081543825600632}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105017169415}
Linking options:
  • https://www.mathnet.ru/eng/tm4459
  • https://doi.org/10.4213/tm4459
  • https://www.mathnet.ru/eng/tm/v329/p40
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:176
    Full-text PDF :2
    References:7
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025