Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2025, Volume 329, Pages 63–74
DOI: https://doi.org/10.4213/tm4461
(Mi tm4461)
 

Singularities on Vertical $\epsilon $-Log Canonical Fano Fibrations

C. Birkara, Bingyi Chenb

a Yau Mathematical Sciences Center, Jingzhai, Tsinghua University, Haidian District, Beijing, 100084, China
b Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, China
References:
Abstract: Given a Fano type log Calabi–Yau fibration $(X,B)\to Z$ with $(X,B)$ being $\epsilon $-lc, the first author in 2023 proved that the generalised pair $(Z,B_Z+M_Z)$ given by the canonical bundle formula is generalised $\delta $-lc, where $\delta >0$ depends only on $\epsilon $ and $\dim X-\dim Z$, which confirmed a conjecture of Shokurov. In this paper, we prove the above result under a weaker assumption. Instead of requiring $(X,B)$ to be $\epsilon $-lc, we assume that $(X,B)$ is $\epsilon $-lc vertically over $Z$, that is, the log discrepancy of $E$ with respect to $(X,B)$ is ${\geq }\,\epsilon $ for any prime divisor $E$ over $X$ whose centre on $X$ is vertical over $Z$.
Keywords: Fano type fibrations, singularities of pairs, canonical bundle formula.
Funding agency Grant number
Tsinghua University
National Program of Overseas High Level Talent
Start-up fund from Sun Yat-sen University
The first author was supported by a grant from Tsinghua University and by a grant of the National Program of Overseas High Level Talent. The second author was supported by the start-up fund from Sun Yat-sen University.
Received: December 12, 2024
Revised: February 20, 2025
Accepted: March 12, 2025
Published: 03.09.2025
English version:
Proceedings of the Steklov Institute of Mathematics, 2025, Volume 329, Pages 55–64
DOI: https://doi.org/10.1134/S0081543825600656
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: C. Birkar, Bingyi Chen, “Singularities on Vertical $\epsilon $-Log Canonical Fano Fibrations”, Birational Geometry and Fano Varieties, Collected papers. Dedicated to Yuri Gennadievich Prokhorov on the occasion of his 60th birthday, Trudy Mat. Inst. Steklova, 329, Steklov Math. Inst., Moscow, 2025, 63–74; Proc. Steklov Inst. Math., 329 (2025), 55–64
Citation in format AMSBIB
\Bibitem{BirChe25}
\by C.~Birkar, Bingyi~Chen
\paper Singularities on Vertical $\epsilon $-Log Canonical Fano Fibrations
\inbook Birational Geometry and Fano Varieties
\bookinfo Collected papers. Dedicated to Yuri Gennadievich Prokhorov on the occasion of his 60th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2025
\vol 329
\pages 63--74
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4461}
\crossref{https://doi.org/10.4213/tm4461}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2025
\vol 329
\pages 55--64
\crossref{https://doi.org/10.1134/S0081543825600656}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105017182555}
Linking options:
  • https://www.mathnet.ru/eng/tm4461
  • https://doi.org/10.4213/tm4461
  • https://www.mathnet.ru/eng/tm/v329/p63
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025