Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2025, Volume 329, Pages 165–189
DOI: https://doi.org/10.4213/tm4469
(Mi tm4469)
 

Narrow Lie Algebras and Integrable Complex Structures

D. V. Millionshchikovabc

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, 119991 Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
c National University of Oil and Gas “Gubkin University”, Leninskii prosp. 65, Moscow, 119991 Russia
References:
Abstract: We study the existence of an integrable complex structure on a real finite-dimensional naturally graded Lie algebra that is narrow in the sense of Zelmanov and Shalev. Every such Lie algebra is generated by two elements. As the most elementary examples, one can consider naturally graded filiform Lie algebras. We show that almost all such nilpotent Lie algebras admit no integrable complex structures. The only exceptions for which the question under study has a positive answer are the even-dimensional quotient Lie algebras $\mathfrak n_1^+(s)$ obtained by factoring the infinite-dimensional subalgebra $\mathfrak n_1^+$ of the loop algebra $\mathcal L(\mathfrak {so}(3))$ of the real simple Lie algebra $\mathfrak {so}(3)$ by the ideals $(\mathfrak n_1^+)^{s+1}$ of the lower central series.
Keywords: narrow Lie algebra, complex structure, Nijenhuis tensor, lower central series, natural grading, minimal model.
Funding agency Grant number
Russian Science Foundation 23-11-00143
This work was supported by the Russian Science Foundation under grant no. 23-11-00143, https://rscf.ru/en/project/23-11-00143/, and performed at Steklov Mathematical Institute of Russian Academy of Sciences.
Received: March 20, 2025
Revised: May 14, 2025
Accepted: June 13, 2025
Published: 03.09.2025
English version:
Proceedings of the Steklov Institute of Mathematics, 2025, Volume 329, Pages 148–171
DOI: https://doi.org/10.1134/S0081543825600747
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. V. Millionshchikov, “Narrow Lie Algebras and Integrable Complex Structures”, Birational Geometry and Fano Varieties, Collected papers. Dedicated to Yuri Gennadievich Prokhorov on the occasion of his 60th birthday, Trudy Mat. Inst. Steklova, 329, Steklov Math. Inst., Moscow, 2025, 165–189; Proc. Steklov Inst. Math., 329 (2025), 148–171
Citation in format AMSBIB
\Bibitem{Mil25}
\by D.~V.~Millionshchikov
\paper Narrow Lie Algebras and Integrable Complex Structures
\inbook Birational Geometry and Fano Varieties
\bookinfo Collected papers. Dedicated to Yuri Gennadievich Prokhorov on the occasion of his 60th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2025
\vol 329
\pages 165--189
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4469}
\crossref{https://doi.org/10.4213/tm4469}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2025
\vol 329
\pages 148--171
\crossref{https://doi.org/10.1134/S0081543825600747}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105017130326}
Linking options:
  • https://www.mathnet.ru/eng/tm4469
  • https://doi.org/10.4213/tm4469
  • https://www.mathnet.ru/eng/tm/v329/p165
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025