Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2025, Volume 329, Pages 100–131
DOI: https://doi.org/10.4213/tm4471
(Mi tm4471)
 

Spinor Modifications of Conic Bundles and Derived Categories of 1-Nodal Fano Threefolds

A. G. Kuznetsovab

a Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b Laboratory of Algebraic Geometry and Its Applications, HSE University, ul. Usacheva 6, Moscow, 119048 Russia
References:
Abstract: Given a flat conic bundle $X/S$ and an abstract spinor bundle $\mathcal F$ on $X$, we define a new conic bundle $X_{\mathcal F}/S$, called a spinor modification of $X$, such that the even Clifford algebras of $X/S$ and $X_{\mathcal F}/S$ are Morita equivalent and the orthogonal complements of $\mathbf D^{\textup {b}}(S)$ in $\mathbf D^{\textup {b}}(X)$ and $\mathbf D^{\textup {b}}(X_{\mathcal F})$ are equivalent as well. We demonstrate how the technique of spinor modifications works in the example of conic bundles associated with some nonfactorial $1$-nodal prime Fano threefolds. In particular, we construct a categorical absorption of singularities for these Fano threefolds.
Keywords: conic bundles, spinor bundles, Fano threefolds.
Funding agency Grant number
HSE Basic Research Program
Ministry of Science and Higher Education of the Russian Federation 075-15-2025-303
This work was performed at the Steklov International Mathematical Center and supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2025-303) and in part by the HSE University Basic Research Program.
Received: June 2, 2025
Revised: July 2, 2025
Accepted: July 6, 2025
Published: 03.09.2025
English version:
Proceedings of the Steklov Institute of Mathematics, 2025, Volume 329, Pages 88–116
DOI: https://doi.org/10.1134/S0081543825600759
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. G. Kuznetsov, “Spinor Modifications of Conic Bundles and Derived Categories of 1-Nodal Fano Threefolds”, Birational Geometry and Fano Varieties, Collected papers. Dedicated to Yuri Gennadievich Prokhorov on the occasion of his 60th birthday, Trudy Mat. Inst. Steklova, 329, Steklov Math. Inst., Moscow, 2025, 100–131; Proc. Steklov Inst. Math., 329 (2025), 88–116
Citation in format AMSBIB
\Bibitem{Kuz25}
\by A.~G.~Kuznetsov
\paper Spinor Modifications of Conic Bundles and Derived Categories of 1-Nodal Fano Threefolds
\inbook Birational Geometry and Fano Varieties
\bookinfo Collected papers. Dedicated to Yuri Gennadievich Prokhorov on the occasion of his 60th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2025
\vol 329
\pages 100--131
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4471}
\crossref{https://doi.org/10.4213/tm4471}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2025
\vol 329
\pages 88--116
\crossref{https://doi.org/10.1134/S0081543825600759}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105017129142}
Linking options:
  • https://www.mathnet.ru/eng/tm4471
  • https://doi.org/10.4213/tm4471
  • https://www.mathnet.ru/eng/tm/v329/p100
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025