Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Volume 252, Pages 194–216 (Mi tm72)  

This article is cited in 5 scientific papers (total in 5 papers)

Deformations of Filiform Lie Algebras and Symplectic Structures

D. V. Millionshchikov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (334 kB) Citations (5)
References:
Abstract: We study symplectic structures on filiform Lie algebras, which are nilpotent Lie algebras with the maximal length of the descending central sequence. Let $\mathfrak g$ be a symplectic filiform Lie algebra and $\dim \mathfrak g=2k\ge 12$. Then $\mathfrak g$ is isomorphic to some $\mathbb N$-filtered deformation either of $\mathfrak m_0(2k)$ (defined by the structure relations $[e_1,e_i]=e_{i+1}$, $i=2,\dots ,2k-1$) or of $\mathcal V_{2k}$, the quotient of the positive part of the Witt algebra $W_+$ by the ideal of elements of degree greater than $2k$. We classify $\mathbb N$-filtered deformations of $\mathcal V_n$: $[e_i,e_j]=(j-i)e_{i+1}+\sum _{l\ge 1}c_{ij}^l e_{i+j+l}$. For $\dim \mathfrak g=n \ge 16$, the moduli space $\mathcal M_n$ of these deformations is the weighted projective space $\mathbb K\mathrm P^4(n-11,n-10,n-9,n-8,n-7)$. For even $n$, the subspace of symplectic Lie algebras is determined by a single linear equation.
Received in June 2005
English version:
Proceedings of the Steklov Institute of Mathematics, 2006, Volume 252, Pages 182–204
DOI: https://doi.org/10.1134/S0081543806010172
Bibliographic databases:
UDC: 515.179+512.81
Language: Russian
Citation: D. V. Millionshchikov, “Deformations of Filiform Lie Algebras and Symplectic Structures”, Geometric topology, discrete geometry, and set theory, Collected papers, Trudy Mat. Inst. Steklova, 252, Nauka, MAIK «Nauka/Inteperiodika», M., 2006, 194–216; Proc. Steklov Inst. Math., 252 (2006), 182–204
Citation in format AMSBIB
\Bibitem{Mil06}
\by D.~V.~Millionshchikov
\paper Deformations of Filiform Lie Algebras and Symplectic Structures
\inbook Geometric topology, discrete geometry, and set theory
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2006
\vol 252
\pages 194--216
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm72}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2255979}
\zmath{https://zbmath.org/?q=an:1351.17012}
\elib{https://elibrary.ru/item.asp?id=13509996}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2006
\vol 252
\pages 182--204
\crossref{https://doi.org/10.1134/S0081543806010172}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746083988}
Linking options:
  • https://www.mathnet.ru/eng/tm72
  • https://www.mathnet.ru/eng/tm/v252/p194
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025