Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 217, Number 2, Pages 237–259
DOI: https://doi.org/10.4213/tmf10472
(Mi tmf10472)
 

Dirac representation of the $SO(3,2)$ group and the Landau problem

S. C. Tiwariab

a Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, India
b Institute of Natural Philosophy, Varanasi, India
References:
Abstract: By systematically studying the infinite degeneracy and constants of motion in the Landau problem, we obtain a central extension of the Euclidean group in two dimension as a dynamical symmetry group, and $Sp(2,\mathbb{R})$ as the spectrum generating group, irrespective of the choice of the gauge. The method of group contraction plays an important role. Dirac's remarkable representation of the $SO(3,2)$ group and the isomorphism of this group with $Sp(4,\mathbb{R})$ are revisited. New insights are gained into the meaning of a two-oscillator system in the Dirac representation. It is argued that because even the two-dimensional isotropic oscillator with the $SU(2)$ dynamical symmetry group does not arise in the Landau problem, the relevance or applicability of the $SO(3,2)$ group is invalidated. A modified Landau–Zeeman model is discussed in which the $SO(3,2)$ group isomorphic to $Sp(4,\mathbb{R})$ can arise naturally.
Keywords: dynamical symmetry group, group contraction, Landau problem, Dirac's remarkable representation, $SO(3,2)$ group.
Received: 04.02.2023
Revised: 09.05.2023
Published: 07.11.2023
English version:
Theoretical and Mathematical Physics, 2023, Volume 217, Issue 2, Pages 1621–1639
DOI: https://doi.org/10.1134/S0040577923110016
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. C. Tiwari, “Dirac representation of the $SO(3,2)$ group and the Landau problem”, TMF, 217:2 (2023), 237–259; Theoret. and Math. Phys., 217:2 (2023), 1621–1639
Citation in format AMSBIB
\Bibitem{Tiw23}
\by S.~C.~Tiwari
\paper Dirac representation of the~$SO(3,2)$ group and the~Landau problem
\jour TMF
\yr 2023
\vol 217
\issue 2
\pages 237--259
\mathnet{http://mi.mathnet.ru/tmf10472}
\crossref{https://doi.org/10.4213/tmf10472}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4670388}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...217.1621T}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 217
\issue 2
\pages 1621--1639
\crossref{https://doi.org/10.1134/S0040577923110016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85177652500}
Linking options:
  • https://www.mathnet.ru/eng/tmf10472
  • https://doi.org/10.4213/tmf10472
  • https://www.mathnet.ru/eng/tmf/v217/i2/p237
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:334
    Full-text PDF :35
    Russian version HTML:175
    References:43
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025