Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 216, Number 2, Pages 271–290
DOI: https://doi.org/10.4213/tmf10480
(Mi tmf10480)
 

This article is cited in 1 scientific paper (total in 1 paper)

Vector fields and invariants of the full symmetric Toda system

A. S. Sorinabc, Yu. B. Chernyakovdef, G. I. Sharygindeg

a Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
b National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
c Dubna State University, Dubna, Moscow region, Russia
d National Research Center "Kurchatov Institute", Moscow, Russia
e Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
f Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
g Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: The geometric properties of the full symmetric Toda systems are studied. A simple geometric construction is described that allows constructing a commutative family of vector fields on a compact group including the Toda vector field, i.e., the field that generates the full symmetric Toda system associated with the Cartan decomposition of a semisimple Lie algebra. Our construction involves representations of a semisimple algebra and is independent of whether the Cartan pair is split. The result is closely related to the family of invariants and semiinvariants for the Toda system on $SL_n$.
Keywords: full symmetric Toda system, commutative families of vector fields, Lie algebras representations.
Funding agency Grant number
Russian Science Foundation 22-11-00272
The work of G. I. Sharygin was partly supported by the Russian Science Foundation (grant No. 22-11-00272).
Received: 14.02.2023
Revised: 10.04.2023
Published: 04.08.2023
English version:
Theoretical and Mathematical Physics, 2023, Volume 216, Issue 2, Pages 1142–1157
DOI: https://doi.org/10.1134/S0040577923080068
Bibliographic databases:
Document Type: Article
MSC: 06A06; 37D15; 37J35
Language: Russian
Citation: A. S. Sorin, Yu. B. Chernyakov, G. I. Sharygin, “Vector fields and invariants of the full symmetric Toda system”, TMF, 216:2 (2023), 271–290; Theoret. and Math. Phys., 216:2 (2023), 1142–1157
Citation in format AMSBIB
\Bibitem{SorCheSha23}
\by A.~S.~Sorin, Yu.~B.~Chernyakov, G.~I.~Sharygin
\paper Vector fields and invariants of the~full symmetric Toda system
\jour TMF
\yr 2023
\vol 216
\issue 2
\pages 271--290
\mathnet{http://mi.mathnet.ru/tmf10480}
\crossref{https://doi.org/10.4213/tmf10480}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4634813}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...216.1142S}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 216
\issue 2
\pages 1142--1157
\crossref{https://doi.org/10.1134/S0040577923080068}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85169101057}
Linking options:
  • https://www.mathnet.ru/eng/tmf10480
  • https://doi.org/10.4213/tmf10480
  • https://www.mathnet.ru/eng/tmf/v216/i2/p271
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:278
    Full-text PDF :70
    Russian version HTML:184
    References:54
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025