Abstract:
We consider methods for constructing finite-gap solutions of the real classical modified Korteweg–de Vries equation and elliptic
finite-gap potentials of the Dirac operator. The Miura
transformation is used in both methods to relate solutions of the Korteweg–de Vries and modified Korteweg–de Vries equations. We
present examples.
Citation:
A. O. Smirnov, I. V. Anisimov, “Finite-gap solutions of the real modified Korteweg–de Vries equation”, TMF, 220:1 (2024), 191–209; Theoret. and Math. Phys., 220:1 (2024), 1224–1240