Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2025, Volume 223, Number 2, Pages 208–246
DOI: https://doi.org/10.4213/tmf10733
(Mi tmf10733)
 

On the $k$th higher Nash blow-up derivation Lie algebras of isolated hypersurface singularities

N. Hussainab, S. S.-T. Yaucd, Huaiqing Zuod

a Department of Mathematics and Statistics, University of Agriculture, Faisalabad, Pakistan
b Interdisciplinary Research Center for Intelligent and Secure Systems, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia
c Beijing Institute of Mathematical Sciences and Applications, Beijing, China
d Department of Mathematical Sciences, Tsinghua University, Beijing, China
References:
Abstract: Many physical questions such as $4d$ $N=2$ superconformal field theories, the Coulomb branch spectrum, and the Seiberg–Witten solutions are related to singularities. In this paper, we introduce some new invariants $\mathcal L^k_n(V)$, $\rho_n^k$, and $d_n^k(V)$ of isolated hypersurface singularities $(V,0)$. We give a new conjecture for the characterization of simple curve singularities using the $k$th higher Nash blow-up derivation Lie algebra $\mathcal L^k_n(V)$. This conjecture is verified for small $n$ and $k$. A inequality conjecture for $\rho_n^k$ and $d_n^k(V)$ is proposed. These two conjectures are verified for binomial singularities.
Keywords: derivations, Nash blow-up, isolated hypersurface singularity.
Funding agency Grant number
National Natural Science Foundation of China 12271280
Beijing Municipal Natural Science Foundation 1252009
Tsinghua University Education Foundation 042202008
H. Zuo was supported by the National Natural Science Foundation of China (grant No. 12271280)} and the Beijing Municipal Natural Science Foundation (grant No. 1252009). S. S.-T. Yau was supported by Tsinghua University Education Foundation (grant No. 042202008).
Received: 19.03.2024
Revised: 19.03.2024
Published: 01.05.2025
English version:
Theoretical and Mathematical Physics, 2025, Volume 223, Issue 2, Pages 705–741
DOI: https://doi.org/10.1134/S0040577925050022
Bibliographic databases:
Document Type: Article
MSC: 14B05, 32S05.
Language: Russian
Citation: N. Hussain, S. S.-T. Yau, Huaiqing Zuo, “On the $k$th higher Nash blow-up derivation Lie algebras of isolated hypersurface singularities”, TMF, 223:2 (2025), 208–246; Theoret. and Math. Phys., 223:2 (2025), 705–741
Citation in format AMSBIB
\Bibitem{HusYauZuo25}
\by N.~Hussain, S.~S.-T.~Yau, Huaiqing~Zuo
\paper On the~$k$th higher Nash blow-up derivation Lie algebras of isolated hypersurface singularities
\jour TMF
\yr 2025
\vol 223
\issue 2
\pages 208--246
\mathnet{http://mi.mathnet.ru/tmf10733}
\crossref{https://doi.org/10.4213/tmf10733}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4910201}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2025TMP...223..705H}
\transl
\jour Theoret. and Math. Phys.
\yr 2025
\vol 223
\issue 2
\pages 705--741
\crossref{https://doi.org/10.1134/S0040577925050022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105006422797}
Linking options:
  • https://www.mathnet.ru/eng/tmf10733
  • https://doi.org/10.4213/tmf10733
  • https://www.mathnet.ru/eng/tmf/v223/i2/p208
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:115
    Full-text PDF :4
    References:27
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025