Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2025, Volume 225, Number 1, Pages 138–158
DOI: https://doi.org/10.4213/tmf10984
(Mi tmf10984)
 

This article is cited in 1 scientific paper (total in 1 paper)

Blow-up of the solution to the Cauchy problem for one $(N+1)$-dimensional composite-type equation with gradient nonlinearity

M. O. Korpusovab, A. A. Paninab, A. K. Matveevaac

a Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
b Peoples' Friendship University of Russia, Moscow, Russia
c National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
References:
Abstract: We consider the Cauchy problem for a third-order nonlinear evolution equation with nonlinearity $|D_xu|^q$. Two exponents, $q_1=N/(N-1)$ and $q_2=(N+1)/(N-1)$, are found such that for $1<q\leqslant q_1$, there is no weak solution local in time for any $T>0$; for $q_1<q\leqslant q_2$, there is a unique weak solution local in time; however, there is no weak solution global in time, i.e., independently of the “value” of the initial function, the solution to the Cauchy problem blows up in a finite time.
Keywords: nonlinear equations of Sobolev type, blow-up, local solvability, nonlinear capacity, blow-up time estimate.
Funding agency Grant number
Russian Science Foundation 23-11-00056
This research was supported by the Russian Science Foundation under grant No. 23-11-00056, https://rscf.ru/en/project/23-11-00056/.
Received: 16.03.2025
Revised: 16.03.2025
Published: 30.09.2025
English version:
Theoretical and Mathematical Physics, 2025, Volume 225, Issue 1, Pages 1811–1829
DOI: https://doi.org/10.1134/S0040577925100083
Document Type: Article
MSC: 74H35, 35K70
Language: Russian
Citation: M. O. Korpusov, A. A. Panin, A. K. Matveeva, “Blow-up of the solution to the Cauchy problem for one $(N+1)$-dimensional composite-type equation with gradient nonlinearity”, TMF, 225:1 (2025), 138–158; Theoret. and Math. Phys., 225:1 (2025), 1811–1829
Citation in format AMSBIB
\Bibitem{KorPanMat25}
\by M.~O.~Korpusov, A.~A.~Panin, A.~K.~Matveeva
\paper Blow-up of the~solution to the~Cauchy problem for one $(N+1)$-dimensional composite-type equation with gradient nonlinearity
\jour TMF
\yr 2025
\vol 225
\issue 1
\pages 138--158
\mathnet{http://mi.mathnet.ru/tmf10984}
\crossref{https://doi.org/10.4213/tmf10984}
\transl
\jour Theoret. and Math. Phys.
\yr 2025
\vol 225
\issue 1
\pages 1811--1829
\crossref{https://doi.org/10.1134/S0040577925100083}
Linking options:
  • https://www.mathnet.ru/eng/tmf10984
  • https://doi.org/10.4213/tmf10984
  • https://www.mathnet.ru/eng/tmf/v225/i1/p138
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025