|
This article is cited in 24 scientific papers (total in 24 papers)
Vacuum structure of $(\overline \psi \psi )^2_3$-model with accounting for the magnetic field and chemical potential
A. S. Vshivtsev, K. G. Klimenko, B. V. Magnitsky Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
Abstract:
The phase structure of $(2+1)$-dimensional field theory with a quartic fermion interaction is investigated with accounting for the background magnetic field $H$ and chemical potential $\mu$. It is shown that there is a critical curvature $\mu=\mu_c(H)$, which separates the multitude of the points $(\mu,H)$ into two regions. In one of them the vacuum is
chiral-symmetric, and in the other the symmetry is spontaneously broken. The behavior of the critical curvature at large and small magnitudes of a background field is analyzed.
Received: 25.01.1995
Citation:
A. S. Vshivtsev, K. G. Klimenko, B. V. Magnitsky, “Vacuum structure of $(\overline \psi \psi )^2_3$-model with accounting for the magnetic field and chemical potential”, TMF, 106:3 (1996), 390–400; Theoret. and Math. Phys., 106:3 (1996), 319–327
Linking options:
https://www.mathnet.ru/eng/tmf1123https://doi.org/10.4213/tmf1123 https://www.mathnet.ru/eng/tmf/v106/i3/p390
|
|