Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 136, Number 3, Pages 507–516
DOI: https://doi.org/10.4213/tmf1915
(Mi tmf1915)
 

This article is cited in 4 scientific papers (total in 4 papers)

Mathematical Model of Resonances and Tunneling in a System with a Bound State

A. A. Arsen'ev

M. V. Lomonosov Moscow State University, Faculty of Physics
References:
Abstract: We study the asymptotic behavior of the residue at the pole of the analytic continuation of the scattering matrix as the imaginary part of the pole tends to zero in the case where the phase space of a quantum mechanical system is a direct sum of two spaces and the nonperturbed evolution operator reduces each of these spaces and has a discrete spectrum in one of them and a continuous spectrum in the other. The perturbation operator mixes the subspaces and generates a resonance. We prove that under certain symmetry conditions in such a system, the scattering amplitude changes sharply in a neighborhood of the real part of the pole of the scattering matrix, and the system demonstrates tunneling or a resonance of the scattering amplitude.
Keywords: scattering, resonance, tunneling.
Received: 21.01.2003
English version:
Theoretical and Mathematical Physics, 2003, Volume 136, Issue 3, Pages 1336–1345
DOI: https://doi.org/10.1023/A:1025659501514
Bibliographic databases:
Language: Russian
Citation: A. A. Arsen'ev, “Mathematical Model of Resonances and Tunneling in a System with a Bound State”, TMF, 136:3 (2003), 507–516; Theoret. and Math. Phys., 136:3 (2003), 1336–1345
Citation in format AMSBIB
\Bibitem{Ars03}
\by A.~A.~Arsen'ev
\paper Mathematical Model of Resonances and Tunneling in a System with a Bound State
\jour TMF
\yr 2003
\vol 136
\issue 3
\pages 507--516
\mathnet{http://mi.mathnet.ru/tmf1915}
\crossref{https://doi.org/10.4213/tmf1915}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2025370}
\zmath{https://zbmath.org/?q=an:1178.81268}
\elib{https://elibrary.ru/item.asp?id=13432184}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 136
\issue 3
\pages 1336--1345
\crossref{https://doi.org/10.1023/A:1025659501514}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185966500011}
Linking options:
  • https://www.mathnet.ru/eng/tmf1915
  • https://doi.org/10.4213/tmf1915
  • https://www.mathnet.ru/eng/tmf/v136/i3/p507
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025