|
|
Teoreticheskaya i Matematicheskaya Fizika, 1970, Volume 3, Number 2, Pages 191–196
(Mi tmf4105)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Problem of the $c\to\infty$ limit in the relativistic Schrödinger equation
E. P. Zhidkov, V. G. Kadyshevskii, Yu. V. Katyshev
Abstract:
A mathematical procedure is given for investigating the regular degeneration of the solutions
of the relativistic Schrödinger equation
$$
[2c\sqrt{q^2+m^2c^2}-H_0^{\operatorname{rad}}-V(r)]\Psi_{ql}(r)=0
$$
into the solutions of the nonrelativlstle equation
$$
\left[\hbar^2\frac{d^2}{dr^2}-\hbar^2\frac{l(l+1)}{r^2}-mV(r)+q^2\right]u_{ql}(r)=0
$$
for the $S$-wave case. The proposed method of a small parameter of the higher derivatives
of a differential equation is applied to several concrete problems.
Received: 18.11.1969
Citation:
E. P. Zhidkov, V. G. Kadyshevskii, Yu. V. Katyshev, “Problem of the $c\to\infty$ limit in the relativistic Schrödinger equation”, TMF, 3:2 (1970), 191–196; Theoret. and Math. Phys., 3:2 (1970), 442–446
Linking options:
https://www.mathnet.ru/eng/tmf4105 https://www.mathnet.ru/eng/tmf/v3/i2/p191
|
|