Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 187, Number 1, Pages 155–176
DOI: https://doi.org/10.4213/tmf8888
(Mi tmf8888)
 

This article is cited in 4 scientific papers (total in 4 papers)

Translation-invariant $p$-adic quasi-Gibbs measures for the Ising–Vannimenus model on a Cayley tree

F. M. Mukhamedova, M. Kh. Saburova, O. N. Khakimovb

a Department of Computational and Theoretical Sciences, Faculty of Science, International Islamic University Malaysia, Pahang, Malaysia
b Institute of Mathematics, National University of Uzbekistan, Tashkent, Uzbekistan
Full-text PDF (539 kB) Citations (4)
References:
Abstract: We consider the $p$-adic Ising–Vannimenus model on the Cayley tree of order $k=2$. This model contains nearest-neighbor and next-nearest-neighbor interactions. We investigate the model using a new approach based on measure theory (in the $p$-adic sense) and describe all translation-invariant $p$-adic quasi-Gibbs measures associated with the model. As a consequence, we can prove that a phase transition exists in the model. Here, "phase transition" means that there exist at least two nontrivial $p$-adic quasi-Gibbs measures such that one is bounded and the other is unbounded. The methods used are inapplicable in the real case.
Keywords: $p$-adic numbers, Ising–Vannimenus model, $p$-adic Gibbs measure, dynamical system, phase transition, Cayley tree.
Funding agency Grant number
Ministry of Higher Education, Malaysia ERGS13-024-0057
ERGS13-025-0058
International Islamic University Malaysia EDW B13-029-0914
This research was supported by the MOHE (Grant Nos. ERGS13-024-0057 and ERGS13-025-0058). The research of F. M. Mukhamedov was supported by the IIUM (Grant No. EDW B13-029-0914).
Received: 06.03.2015
English version:
Theoretical and Mathematical Physics, 2016, Volume 187, Issue 1, Pages 583–602
DOI: https://doi.org/10.1134/S0040577916040127
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: F. M. Mukhamedov, M. Kh. Saburov, O. N. Khakimov, “Translation-invariant $p$-adic quasi-Gibbs measures for the Ising–Vannimenus model on a Cayley tree”, TMF, 187:1 (2016), 155–176; Theoret. and Math. Phys., 187:1 (2016), 583–602
Citation in format AMSBIB
\Bibitem{MukSabKha16}
\by F.~M.~Mukhamedov, M.~Kh.~Saburov, O.~N.~Khakimov
\paper Translation-invariant $p$-adic quasi-Gibbs measures for the~Ising--Vannimenus model on a~Cayley tree
\jour TMF
\yr 2016
\vol 187
\issue 1
\pages 155--176
\mathnet{http://mi.mathnet.ru/tmf8888}
\crossref{https://doi.org/10.4213/tmf8888}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3507530}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...187..583M}
\elib{https://elibrary.ru/item.asp?id=25865567}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 187
\issue 1
\pages 583--602
\crossref{https://doi.org/10.1134/S0040577916040127}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376274300012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969821628}
Linking options:
  • https://www.mathnet.ru/eng/tmf8888
  • https://doi.org/10.4213/tmf8888
  • https://www.mathnet.ru/eng/tmf/v187/i1/p155
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025