Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 202, Number 3, Pages 474–491
DOI: https://doi.org/10.4213/tmf9785
(Mi tmf9785)
 

Hamiltonian description of vortex systems

L. I. Piterbarg

Department of Mathematics, University of Southern California, Los Angeles, California, USA
References:
Abstract: In the framework of two-dimensional ideal hydrodynamics, we define a vortex system as a smooth vorticity function with a few local positive maximums and negative minimums separated by curves of zero vorticity. We discuss the invariants of such structures that follow from the vorticity conservation law and the invertibility of Lagrangian motion. Introducing new functional variables diagonalizing the original noncanonical Poisson bracket, we develop a Hamiltonian formalism for vortex systems.
Keywords: vortex, continuum Hamiltonian system, Poisson bracket, vorticity, two-dimensional hydrodynamics.
Received: 27.07.2019
Revised: 18.09.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 202, Issue 3, Pages 412–427
DOI: https://doi.org/10.1134/S0040577920030137
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: L. I. Piterbarg, “Hamiltonian description of vortex systems”, TMF, 202:3 (2020), 474–491; Theoret. and Math. Phys., 202:3 (2020), 412–427
Citation in format AMSBIB
\Bibitem{Pit20}
\by L.~I.~Piterbarg
\paper Hamiltonian description of vortex systems
\jour TMF
\yr 2020
\vol 202
\issue 3
\pages 474--491
\mathnet{http://mi.mathnet.ru/tmf9785}
\crossref{https://doi.org/10.4213/tmf9785}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4070096}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...202..412P}
\elib{https://elibrary.ru/item.asp?id=43575359}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 202
\issue 3
\pages 412--427
\crossref{https://doi.org/10.1134/S0040577920030137}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000524228200013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083192397}
Linking options:
  • https://www.mathnet.ru/eng/tmf9785
  • https://doi.org/10.4213/tmf9785
  • https://www.mathnet.ru/eng/tmf/v202/i3/p474
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:376
    Full-text PDF :144
    References:58
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025