Taurida Journal of Computer Science Theory and Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Taurida Journal of Computer Science Theory and Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Taurida Journal of Computer Science Theory and Mathematics, 2021, Issue 2, Pages 88–101 (Mi tvim120)  

On the stability of stationary states in diffusion models

M. V. Polovinkinaa, I. P. Polovinkinbc

a Voronezh State University of Engineering Technologies
b Voronezh State University
c Belgorod State University
Abstract: We consider the initial-boundary value problem for the system of partial differential equations:
\begin{equation*} \frac{\partial u_s}{\partial t}=\vartheta_s \Delta u_s+F_s(u),\ s=1,\dots,m, \ x=(x_1,\dots,x_n)\in\Omega\subset\mathbb{R}^n, \end{equation*}

\begin{equation*} \left.\left(\mu_s u_s + \eta_s\frac{\partial u_s}{\partial\overrightarrow{\nu}}\right)\right|_{x\in\partial\Omega}=B_s(x),\ \mu_s^2+\eta_s^2>0, \ \mu_s\geq0,\ \eta_s \geq 0, \end{equation*}

\begin{equation*} u_s(x,0)=u_s^0(x), \ s=1,\dots,m, \end{equation*}
where $\Omega$ is a bounded domain with a piecewise smooth boundary $\partial\Omega$, $\overrightarrow{\nu}$ is a unit external normal vector to the boundary $\partial\Omega$ of the domain $\Omega$, $u=(u_1(x,t),\dots,u_m(x,t))$, $\vartheta_s\geq 0$, ${\rm diam}\Omega=d$, $B_s(x)\in C(\partial\Omega)$, $u_s^0(x)\in C(\overline{\Omega})$, $s=1,\dots,m,$ ${\overline{\Omega}=\Omega\cup\partial\Omega},$ $\Delta$ is the Laplace operator defined by the formula
$$ \Delta v= \sum\limits_{j=1}^n\,\frac{\partial^2 v}{\partial x_j^2}. $$
It is assumed that the functions $F_s$ are differentiable at a stationary point. Let $w=(w_1(x),\dots,w_m(x))$ be a stationary solution of the considered problem, that is, the solution of the boundary problem
\begin{equation*} \vartheta_s \Delta w_s+F_s(w)=0,\ s=1,\dots,m, \ x\in\Omega, \end{equation*}

\begin{equation*} \left.\left(\mu_s w_s + \eta_s\frac{\partial w_s}{\partial\overrightarrow{\nu}}\right)\right|_{x\in\partial\Omega}=B_s(x),\ s=1,\dots,m. \end{equation*}
We showed that a sufficient condition for the stability of a stationary solution is the negative definiteness of the quadratic form
\begin{equation*} \sum\limits_{s=1}^m\sum\limits_{k=1}^m\,A_{sk}\,z_kz_s\,, \end{equation*}
where
\begin{equation*} A_{sk}=\frac{1}{2}\left(\frac{\partial F_s}{\partial x_k}+\frac{\partial F_k}{\partial x_s}\right)-\delta_{ks}\vartheta_s/d^2. \end{equation*}
We note from a general point of view that adding diffusion terms to ordinary differential equations, for example, to logistic ones, can in some cases improve sufficient conditions for the stability of a stationary solution. We give examples of models in which the addition of diffusion terms to ordinary differential equations changes the stability conditions of a stationary solution.
Keywords: diffusion model, initial boundary value problem, stationary solution (state), stability, sufficient stability condition.
Document Type: Article
UDC: 519.765, 51-7, 517.9
MSC: 35B35, 35Q99
Language: Russian
Citation: M. V. Polovinkina, I. P. Polovinkin, “On the stability of stationary states in diffusion models”, Taurida Journal of Computer Science Theory and Mathematics, 2021, no. 2, 88–101
Citation in format AMSBIB
\Bibitem{PolPol21}
\by M.~V.~Polovinkina, I.~P.~Polovinkin
\paper On the stability of stationary states in diffusion models
\jour Taurida Journal of Computer Science Theory and Mathematics
\yr 2021
\issue 2
\pages 88--101
\mathnet{http://mi.mathnet.ru/tvim120}
Linking options:
  • https://www.mathnet.ru/eng/tvim120
  • https://www.mathnet.ru/eng/tvim/y2021/i2/p88
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Taurida Journal of Computer Science Theory and Mathematics
    Statistics & downloads:
    Abstract page:162
    Full-text PDF :48
    References:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026