Taurida Journal of Computer Science Theory and Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Taurida Journal of Computer Science Theory and Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Taurida Journal of Computer Science Theory and Mathematics, 2023, Issue 1, Pages 7–18 (Mi tvim158)  

Linear Isometries of Banach-Kantorovich $L_p$-spaces

V. I. Chilina, G. B. Zakirovab

a Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan, 9, Universitet, Tashkent, 100174, Uzbekistan
b Tashkent State Transport University, 1, Odilxodjaev, Tashkent, 100167, Uzbekistan
Abstract: Let $B$ be a complete Boolean algebra, $Q(B)$ be the Stone compact of $B$, and $C_\infty (Q(B))$ be the commutative unital algebra of all continuous functions $x: Q(B) \to [-\infty, +\infty]$, assuming possibly the values $\pm\infty$ on nowhere-dense subsets of $Q(B)$. We consider the Banach-Kantorovich spaces $L_p(B,m)\subset C_\infty (Q(B)),$ associated with a measure $m$ defined on $B$ with the values in the algebra of measurable real functions. It is shown that in the case when the measure $m$ has the Maharam property, for any linear isometry $U: L_p(B,m) \to L_p(B,m), 1\leq p < \infty, p \neq 2,$ there exist an injective normal homomorphisms $T : C_\infty (Q(B)) \to C_\infty (Q(B))$ and an element $y \in L_p(B,m)$ such that $U(x ) =y\cdot T(x)$ for all $x\in L_p(B,m)$.
Keywords: Banach-Kantorovich space, Maharam measure, vector integration, linear isometry.
Document Type: Article
UDC: 517.98
Language: English
Citation: V. I. Chilin, G. B. Zakirova, “Linear Isometries of Banach-Kantorovich $L_p$-spaces”, Taurida Journal of Computer Science Theory and Mathematics, 2023, no. 1, 7–18
Citation in format AMSBIB
\Bibitem{ChiZak23}
\by V.~I.~Chilin, G.~B.~Zakirova
\paper Linear Isometries of Banach-Kantorovich $L_p$-spaces
\jour Taurida Journal of Computer Science Theory and Mathematics
\yr 2023
\issue 1
\pages 7--18
\mathnet{http://mi.mathnet.ru/tvim158}
Linking options:
  • https://www.mathnet.ru/eng/tvim158
  • https://www.mathnet.ru/eng/tvim/y2023/i1/p7
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Taurida Journal of Computer Science Theory and Mathematics
    Statistics & downloads:
    Abstract page:91
    Full-text PDF :51
    References:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025