Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1999, Volume 44, Issue 4, Pages 880–885
DOI: https://doi.org/10.4213/tvp1074
(Mi tvp1074)
 

Short Communications

Exit laws and excessive functions for superprocesses

E. B. Dynkin

Cornell University, Department of Mathematics, NY
Abstract: Let $\xi$ be a Markov process with transition function $p(r,x;t,dy)$ and let $X$ be the corresponding Dawson–Watanabe superprocess (i.e., the superprocess with the branching characteristic $\psi(u)=\gamma u^2$). Denote by $\mathcal P$ the transition function of $X$ and put
$$ p_n(r,x;t,dy)=\prod_{i=1}^np(r,x_i;t,dy_i), $$
To every $p_n$-exit law $\ell$ there corresponds a $\mathcal P$-exit law $L_\ell$ such that, for every $t$, $L_\ell^t(\mu)$ is a polynomial of degree $n$ in $\mu$ with the leading term $\langle \ell^t,\mu^n\rangle $. Every polynomial $\mathcal P$-exit law has a unique representation of the form $L_{\ell_1}+\cdots+L_{\ell_n}$, where $\ell_k$ is a $p_k$-exit law.
Keywords: Markov process, Dawson–Watanabe superprocess, polynomial $\mathcal{P}$-exit law.
Received: 27.07.1999
English version:
Theory of Probability and its Applications, 2000, Volume 44, Issue 4, Pages 762–767
DOI: https://doi.org/10.1137/S0040585X97977987
Bibliographic databases:
Document Type: Article
Language: English
Citation: E. B. Dynkin, “Exit laws and excessive functions for superprocesses”, Teor. Veroyatnost. i Primenen., 44:4 (1999), 880–885; Theory Probab. Appl., 44:4 (2000), 762–767
Citation in format AMSBIB
\Bibitem{Dyn99}
\by E.~B.~Dynkin
\paper Exit laws and excessive functions for superprocesses
\jour Teor. Veroyatnost. i Primenen.
\yr 1999
\vol 44
\issue 4
\pages 880--885
\mathnet{http://mi.mathnet.ru/tvp1074}
\crossref{https://doi.org/10.4213/tvp1074}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1811140}
\zmath{https://zbmath.org/?q=an:0967.60086}
\transl
\jour Theory Probab. Appl.
\yr 2000
\vol 44
\issue 4
\pages 762--767
\crossref{https://doi.org/10.1137/S0040585X97977987}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000165796900008}
Linking options:
  • https://www.mathnet.ru/eng/tvp1074
  • https://doi.org/10.4213/tvp1074
  • https://www.mathnet.ru/eng/tvp/v44/i4/p880
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025