|
|
Teoriya Veroyatnostei i ee Primeneniya, 1980, Volume 25, Issue 2, Pages 369–374
(Mi tvp1173)
|
|
|
|
Short Communications
Stable subspaces and a theorem on a decomposition of martingales
L. I. Gal'čuk Moscow
Abstract:
Let $m=(m_t)$, $t\in R_+$, be an $n$-dimensional continuous local martingale, $\mu(\omega,dt,dx)$
be an integervalued random measure on a $R_+\times E$ and $\nu(\omega,dt,dx)$ be its dual predictable
projection. We prove that every martingale $X\in H^q$, $q\in[1,\infty[$, possesses a unique decomposition of the form
$$
X_t-X_0=\int_0^tf(s)\,dm_s+\int_0^t\int_Eg(s,x)(\mu-\nu)(ds,dx)+\int_0^t\int_Eh(s,x)\mu(ds,dx)+X_t'.
$$
All additive terms of the rigth hand side belong to the space $H^q$ and the process $X'$ is
orthogonal to $m$ and hasn't jumps on the support of $\mu$.
Received: 23.12.1977
Citation:
L. I. Gal'čuk, “Stable subspaces and a theorem on a decomposition of martingales”, Teor. Veroyatnost. i Primenen., 25:2 (1980), 369–374; Theory Probab. Appl., 25:2 (1981), 366–370
Linking options:
https://www.mathnet.ru/eng/tvp1173 https://www.mathnet.ru/eng/tvp/v25/i2/p369
|
|