|
|
Teoriya Veroyatnostei i ee Primeneniya, 1971, Volume 16, Issue 1, Pages 83–92
(Mi tvp1970)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
A limit theorem for a characteristic of a random Boolean matrix
M. V. Kozlov Moscow
Abstract:
Let $\|a_i^j,\ i=1,\dots,k,\ j=1,\dots,n\|$, $k=[n\theta]$, $0<\theta<1$, be a Boolean matrix with mutually independent random elements $a_i^j$:
$$
\mathbf P\{a_i^j=1\}=\pi_i^j,\quad0<\pi_i^j<1.
$$
We consider the minimum distance $\zeta$ of a random linear code with parity-check matrix $\|a_i^j\|$.
Theorem 1. {\it Let all $\pi_i^j\in[\delta,1-\delta]$ where $\delta$ is a fixed positive number. Then {(3)} holds uniformly for $\pi_i^j\in[\delta,1-\delta]$ and for $t$ subject to} (1), (2).
Theorem 2. (3) holds uniformly for $\pi_i^j\in[\delta_n,1-\delta_n]$ as $\delta_n\to0$, $\delta_nn/\ln n\to\infty$ and for $t$ subject to (4), (5).
Received: 30.09.1969
Citation:
M. V. Kozlov, “A limit theorem for a characteristic of a random Boolean matrix”, Teor. Veroyatnost. i Primenen., 16:1 (1971), 83–92; Theory Probab. Appl., 16:1 (1971), 91–101
Linking options:
https://www.mathnet.ru/eng/tvp1970 https://www.mathnet.ru/eng/tvp/v16/i1/p83
|
|