Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1975, Volume 20, Issue 3, Pages 664–667 (Mi tvp3328)  

This article is cited in 2 scientific papers (total in 2 papers)

Short Communications

Some properties of lacunary series and Gaussian measures connected with uniform versions of properties of Egoroff and Lusin

B. S. Tsirel'son

Leningrad
Full-text PDF (321 kB) Citations (2)
Abstract: Let $A$ be a measurable subset of $[0,1]$ and $\operatorname{mes}A>0$. For any function $f$ satisfying
\begin{gather*} f(t)=\sum(a_k\cos\lambda_kt+b_k\sin\lambda_kt),\quad\lambda_1,\lambda_2,\dots>0,\quad\inf(\lambda_{k+1}/\lambda_k)>1, \\ \sum(a_k^2+b_k^2)<\infty\quad\text{and }|f(t)|\le1\quad\text{a.e.\ on }A, \end{gather*}
we can find a sequence of sets $B_1\subset B_2\subset\dots\subset[0,1]$, $\operatorname{mes}B_n\to1$, and a function $F\in L_1[0,1]$ such that $\sum(a_k\cos\lambda_kt+b_k\sin\lambda_kt)$ converges uniformly on every $B_n$ and $|f(t)|\le F(t)$ a.e. on $[0,1]$. The sequence $\{B_n\}$ and the function $F$ depends on $\{\lambda_k\}$, $A$ only. The function $F$ may be chosen in such a way that $\int_0^1\exp(\alpha F(t))\,dt<+\infty$ for some positive $\alpha$. It is interesting to observe an analogy between this theorem and similar results about Gaussian random variables.
Received: 13.03.1975
English version:
Theory of Probability and its Applications, 1976, Volume 20, Issue 3, Pages 652–655
DOI: https://doi.org/10.1137/1120074
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: B. S. Tsirel'son, “Some properties of lacunary series and Gaussian measures connected with uniform versions of properties of Egoroff and Lusin”, Teor. Veroyatnost. i Primenen., 20:3 (1975), 664–667; Theory Probab. Appl., 20:3 (1976), 652–655
Citation in format AMSBIB
\Bibitem{Tsi75}
\by B.~S.~Tsirel'son
\paper Some properties of lacunary series and Gaussian measures connected with uniform versions of properties of Egoroff and Lusin
\jour Teor. Veroyatnost. i Primenen.
\yr 1975
\vol 20
\issue 3
\pages 664--667
\mathnet{http://mi.mathnet.ru/tvp3328}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=377402}
\zmath{https://zbmath.org/?q=an:0345.60023}
\transl
\jour Theory Probab. Appl.
\yr 1976
\vol 20
\issue 3
\pages 652--655
\crossref{https://doi.org/10.1137/1120074}
Linking options:
  • https://www.mathnet.ru/eng/tvp3328
  • https://www.mathnet.ru/eng/tvp/v20/i3/p664
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025