|
|
Teoriya Veroyatnostei i ee Primeneniya, 1994, Volume 39, Issue 4, Pages 699–715
(Mi tvp3848)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Branching processes with final types of particles and random trees
V. A. Vatutin Steklov Mathematical Institute, Russian Academy of Sciences
Abstract:
This paper considers a Bellman–Harris branching process whose probability generating function $f(s)$ of the number of direct descendants of particles satisfies the relation $f(s) = s + (1 - s)^{1 + \alpha } L(1 - s)$, $0 < \alpha \le 1$. Let $\tau $ be the moment of extinction of the process and let $\nu_\Delta $ be the total number of particles the number of direct descendants of each of which belongs to the set $\Delta ,\Delta \subset \{ 0,1, \ldots ,n, \ldots \} $. The paper gives conditions under which, for any $x \in ( - \infty , + \infty )$ and some scaling constants $b(N)$, a nondegenerate limit, $\lim _{N \to \infty } \mathbf{P}\{ \tau b(N) \le x\mid\nu_\Delta = N\} $, exists.
Keywords:
Bellman–Harris branching process, a rooted random tree, the weight and height of a tree, limiting distributions, final particles.
Received: 11.07.1991
Citation:
V. A. Vatutin, “Branching processes with final types of particles and random trees”, Teor. Veroyatnost. i Primenen., 39:4 (1994), 699–715; Theory Probab. Appl., 39:4 (1994), 628–641
Linking options:
https://www.mathnet.ru/eng/tvp3848 https://www.mathnet.ru/eng/tvp/v39/i4/p699
|
|