Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2001, Volume 46, Issue 1, Pages 169–175
DOI: https://doi.org/10.4213/tvp4035
(Mi tvp4035)
 

Short Communications

On Coupling of Brownian Bridges

S. Levental

Michigan State University, Department of Statistics and Probability
Abstract: Let $\{B(t),\ 0\le t\le1\}$ be a Brownian bridge. Let $Y(t)=\int^t_0 f(u)\,dB(u)$, where $f\colon[0,1]\to\{+1,-1\}$ is a nonrandom and measurable function. Problem: Is there a Brownian bridge $B^*$ such that $|Y(t)|\ge|B^*(t)|$, $0\le t\le 1$, a.s.? The answer is positive. We will prove that we can take $B^*$ to be
$$ B^*(t)=\begin{cases} Y(t),&0\le t\le\tau,\\ B(t),&\tau\le t\le 1,\ Y(\tau)=+B(\tau),\\ -B(t),&\tau\le t\le 1,\ Y(\tau)=-B(\tau), \end{cases} $$
where $\tau=\max\{t\ge 0:|Y(t)|=|B(t)|\}$. Now let $X_+(t)=\int^t_0 1_{\{f=+1\}}(u)\,dB(u)$ and $X_-(t)=\int^t_0 1_{\{f=-1\}}(u)\,dB(u)$, $0\le t\le 1$. Is there a Brownian bridge $B_*$ such that $\max_{0\le t\le 1}|B_*(t)|=\max_{0\le t\le 1}\{|X_+(t)|\vee|X_-(t)|\}$? Again, the answer is positive and will be discussed. As a corollary of these constructions, we get a sharp inequality that compares the distributions of $\max_{0\le t\le 1}|B(t)|$ and $\max_{0\le t\le 1}|Y(t)|$.
Keywords: Brownian bridge, coupling, exchangeable random variables.
Received: 25.08.1999
English version:
Theory of Probability and its Applications, 2002, Volume 46, Issue 1, Pages 146–153
DOI: https://doi.org/10.1137/S0040585X97978828
Bibliographic databases:
Document Type: Article
Language: English
Citation: S. Levental, “On Coupling of Brownian Bridges”, Teor. Veroyatnost. i Primenen., 46:1 (2001), 169–175; Theory Probab. Appl., 46:1 (2002), 146–153
Citation in format AMSBIB
\Bibitem{Lev01}
\by S.~Levental
\paper On Coupling of Brownian Bridges
\jour Teor. Veroyatnost. i Primenen.
\yr 2001
\vol 46
\issue 1
\pages 169--175
\mathnet{http://mi.mathnet.ru/tvp4035}
\crossref{https://doi.org/10.4213/tvp4035}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1968715}
\zmath{https://zbmath.org/?q=an:1018.60083}
\transl
\jour Theory Probab. Appl.
\yr 2002
\vol 46
\issue 1
\pages 146--153
\crossref{https://doi.org/10.1137/S0040585X97978828}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000174464700012}
Linking options:
  • https://www.mathnet.ru/eng/tvp4035
  • https://doi.org/10.4213/tvp4035
  • https://www.mathnet.ru/eng/tvp/v46/i1/p169
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025