|
|
Teoriya Veroyatnostei i ee Primeneniya, 1962, Volume 7, Issue 1, Pages 82–83
(Mi tvp4700)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Short Communications
Martingales on Metric Spaces
V. E. Beneš Bell Telephone Laboratories, Incorporated Murray Hill, New Jersey
Abstract:
Let $\{x_n,n=1,2,\dots\}$ be a random sequence with values in a compact metric space $X$. Following Doss, we define the conditional mathematical expectation of $x_n$ with respect to the Borel field $\mathfrak{F}$ as the (random) set $$M\left\{{x_n|\mathfrak{F}}\right\}=\mathop\cup\limits_{y\in D}\left\{{z:d\left({z,y}\right)\leq{\mathbf E}\left({d\left({x_n,y}\right)|\mathfrak{F}}\right)}\right\},$$ where $d(\cdot,\cdot)$ is the metric and $D$ is a countable dense subset of $X$. Let $\mathfrak{F}_n$ be an increasing sequence of Borel fields, such that $x_n$ is $\mathfrak{F}_n$-measurable. The process $x_n$ is called a (generalized) martingale if $x_n\in M\{x_{n+1}| \mathfrak{F}_n\}$ with probability one.
Received: 27.03.1961
Citation:
V. E. Beneš, “Martingales on Metric Spaces”, Teor. Veroyatnost. i Primenen., 7:1 (1962), 82–83; Theory Probab. Appl., 7:1 (1962), 81–82
Linking options:
https://www.mathnet.ru/eng/tvp4700 https://www.mathnet.ru/eng/tvp/v7/i1/p82
|
|