Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1962, Volume 7, Issue 1, Pages 82–83 (Mi tvp4700)  

This article is cited in 2 scientific papers (total in 2 papers)

Short Communications

Martingales on Metric Spaces

V. E. Beneš

Bell Telephone Laboratories, Incorporated Murray Hill, New Jersey
Full-text PDF (232 kB) Citations (2)
Abstract: Let $\{x_n,n=1,2,\dots\}$ be a random sequence with values in a compact metric space $X$. Following Doss, we define the conditional mathematical expectation of $x_n$ with respect to the Borel field $\mathfrak{F}$ as the (random) set
$$M\left\{{x_n|\mathfrak{F}}\right\}=\mathop\cup\limits_{y\in D}\left\{{z:d\left({z,y}\right)\leq{\mathbf E}\left({d\left({x_n,y}\right)|\mathfrak{F}}\right)}\right\},$$
where $d(\cdot,\cdot)$ is the metric and $D$ is a countable dense subset of $X$. Let $\mathfrak{F}_n$ be an increasing sequence of Borel fields, such that $x_n$ is $\mathfrak{F}_n$-measurable. The process $x_n$ is called a (generalized) martingale if $x_n\in M\{x_{n+1}| \mathfrak{F}_n\}$ with probability one.
Received: 27.03.1961
English version:
Theory of Probability and its Applications, 1962, Volume 7, Issue 1, Pages 81–82
DOI: https://doi.org/10.1137/1107005
Document Type: Article
Language: English
Citation: V. E. Beneš, “Martingales on Metric Spaces”, Teor. Veroyatnost. i Primenen., 7:1 (1962), 82–83; Theory Probab. Appl., 7:1 (1962), 81–82
Citation in format AMSBIB
\Bibitem{Ben62}
\by V.~E.~Bene{\v s}
\paper Martingales on Metric Spaces
\jour Teor. Veroyatnost. i Primenen.
\yr 1962
\vol 7
\issue 1
\pages 82--83
\mathnet{http://mi.mathnet.ru/tvp4700}
\transl
\jour Theory Probab. Appl.
\yr 1962
\vol 7
\issue 1
\pages 81--82
\crossref{https://doi.org/10.1137/1107005}
Linking options:
  • https://www.mathnet.ru/eng/tvp4700
  • https://www.mathnet.ru/eng/tvp/v7/i1/p82
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025