Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2022, Volume 67, Issue 3, Pages 519–540
DOI: https://doi.org/10.4213/tvp5450
(Mi tvp5450)
 

A note on the Berry–Esseen bounds for $\rho$-mixing random variables and their application

C. Lu, W. Yu, R. L. Ji, H. L. Zhou, X. J. Wang

School of Mathematical Sciences, Anhui University, Hefei, P.R. China
References:
Abstract: Recently, Wang and Hu [Theory Probab. Appl., 63 (2019), pp. 479–499] established the Berry–Esseen bounds for $\rho$-mixing random variables (r.v.'s) with the rate of normal approximation $O(n^{-1/6}\log n)$ by using the martingale method. In this paper, we establish some general results on the rates of normal approximation, which include the corresponding ones of Wang and Hu. The rate can be as high as $O(n^{-1/5})$ or $O(n^{-1/4}\log^{1/2} n)$ under some suitable conditions. As applications, we obtain the Berry–Esseen bounds of sample quantiles based on $\rho$-mixing random samples. Finally, we also present some numerical simulations to demonstrate finite sample performances of the theoretical result.
Keywords: Berry–Esseen bound, asymptotic normality, nonparametric regression model, $\rho$-mixing random variables, sample quantiles.
Funding agency Grant number
National Natural Science Foundation of China 11871072
12001105
Natural Science Foundation of Anhui Province 1908085QA01
1908085QA07
Provincial Natural Science Research Projects of Anhui Colleges KJ2019A0001
KJ2019A0003
Postdoctoral Science Foundation of China 2019M660156
This work was supported by the National Natural Science Foundation of China (projects 11871072 and 12001105), the Natural Science Foundation of Anhui Province (project 2108085MA06), the Provincial Natural Science Research Projects of Anhui Colleges (projects KJ2019A0001 and KJ2019A0003), and the Postdoctoral Science Foundation of China (project 2019M660156).
Received: 27.10.2020
Revised: 20.07.2021
Accepted: 12.10.2021
Published: 22.07.2022
English version:
Theory of Probability and its Applications, 2022, Volume 67, Issue 3, Pages 415–433
DOI: https://doi.org/10.1137/S0040585X97T991027
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: C. Lu, W. Yu, R. L. Ji, H. L. Zhou, X. J. Wang, “A note on the Berry–Esseen bounds for $\rho$-mixing random variables and their application”, Teor. Veroyatnost. i Primenen., 67:3 (2022), 519–540; Theory Probab. Appl., 67:3 (2022), 415–433
Citation in format AMSBIB
\Bibitem{LuYuJi22}
\by C.~Lu, W.~Yu, R.~L.~Ji, H.~L.~Zhou, X.~J.~Wang
\paper A~note on the Berry--Esseen bounds for $\rho$-mixing random variables and their application
\jour Teor. Veroyatnost. i Primenen.
\yr 2022
\vol 67
\issue 3
\pages 519--540
\mathnet{http://mi.mathnet.ru/tvp5450}
\crossref{https://doi.org/10.4213/tvp5450}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4506221}
\transl
\jour Theory Probab. Appl.
\yr 2022
\vol 67
\issue 3
\pages 415--433
\crossref{https://doi.org/10.1137/S0040585X97T991027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85152093084}
Linking options:
  • https://www.mathnet.ru/eng/tvp5450
  • https://doi.org/10.4213/tvp5450
  • https://www.mathnet.ru/eng/tvp/v67/i3/p519
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025