Abstract:
Let $\{X,X_n,\, n\geq1\}$ be a sequence of identically distributed negatively
superadditive-dependent random variables, and let $\{A_{ni},\,
1\leq i\leq n,\, n \!\geq\! 1\}$ be an array of negatively
supperadditive-dependent random weights. Under the almost optimal
moment conditions, we show that for any $\varepsilon>0$,
$\sum_{n=1}^{\infty}n^{-1}\mathbf{P}\bigl(\max_{1\leq m\leq n} \bigl|
\sum_{i=1}^mA_{ni}X_i\bigr|>\varepsilon n^{1/\alpha}\ln^{1/\gamma}n\bigr)
<\infty$, where $0<\gamma<\alpha\leq2$, and that for any $0<q<\alpha$,
$\sum_{n=1}^{\infty}n^{-1}\mathbf
E\bigl(n^{-1/\alpha}\ln^{-1/\gamma}n\max_{1\leq m\leq n} \bigl|
\sum_{i=1}^mA_{ni}X_i\bigr|-\varepsilon\bigr)_+^q<\infty$. The main results
obtained here extend and improve the corresponding ones in the literature. As
an application, a new result on the strong law of large numbers for the
random weighting estimation of sample mean is provided.
Keywords:
convergence rate, randomly weighted, negatively superadditive-dependent, strong law of large numbers, sample mean.
Excellent Scientific Research and Innovation Team of Anhui Colleges
2022AH010098
Supported by the National Social Science Foundation of China (22BTJ059), the National Natural Science Foundation of China (12201079, 12201004, 12201600, 12301181), the Natural Science Foundation of Anhui Province (2308085MA07), and the Excellent Scientific Research and Innovation Team of Anhui Colleges (2022AH010098).
Citation:
Y. Wu, X. J. Wang, “Convergence rate for randomly weighted
sums of random variables and its application”, Teor. Veroyatnost. i Primenen., 69:3 (2024), 611–628; Theory Probab. Appl., 69:3 (2024), 488–502