Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2024, Volume 69, Issue 3, Pages 611–628
DOI: https://doi.org/10.4213/tvp5551
(Mi tvp5551)
 

Convergence rate for randomly weighted sums of random variables and its application

Y. Wua, X. J. Wangb

a School of Big Data and Artificial Intelligence, Center of Applied Mathematics, Chizhou University, Chizhou, P. R. China
b School of Big Data and Statistics, Anhui University, Hefei, P. R. China
References:
Abstract: Let $\{X,X_n,\, n\geq1\}$ be a sequence of identically distributed negatively superadditive-dependent random variables, and let $\{A_{ni},\, 1\leq i\leq n,\, n \!\geq\! 1\}$ be an array of negatively supperadditive-dependent random weights. Under the almost optimal moment conditions, we show that for any $\varepsilon>0$, $\sum_{n=1}^{\infty}n^{-1}\mathbf{P}\bigl(\max_{1\leq m\leq n} \bigl| \sum_{i=1}^mA_{ni}X_i\bigr|>\varepsilon n^{1/\alpha}\ln^{1/\gamma}n\bigr) <\infty$, where $0<\gamma<\alpha\leq2$, and that for any $0<q<\alpha$, $\sum_{n=1}^{\infty}n^{-1}\mathbf E\bigl(n^{-1/\alpha}\ln^{-1/\gamma}n\max_{1\leq m\leq n} \bigl| \sum_{i=1}^mA_{ni}X_i\bigr|-\varepsilon\bigr)_+^q<\infty$. The main results obtained here extend and improve the corresponding ones in the literature. As an application, a new result on the strong law of large numbers for the random weighting estimation of sample mean is provided.
Keywords: convergence rate, randomly weighted, negatively superadditive-dependent, strong law of large numbers, sample mean.
Funding agency Grant number
National Social Science Foundation of China 22BTJ059
National Natural Science Foundation of China 12201004
12201079
12201600
12301181
Natural Science Foundation of Anhui Province 2108085MA06
Excellent Scientific Research and Innovation Team of Anhui Colleges 2022AH010098
Supported by the National Social Science Foundation of China (22BTJ059), the National Natural Science Foundation of China (12201079, 12201004, 12201600, 12301181), the Natural Science Foundation of Anhui Province (2308085MA07), and the Excellent Scientific Research and Innovation Team of Anhui Colleges (2022AH010098).
Received: 01.02.2022
Accepted: 15.03.2022
Published: 23.07.2024
English version:
Theory of Probability and its Applications, 2024, Volume 69, Issue 3, Pages 488–502
DOI: https://doi.org/10.1137/S0040585X97T992057
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Y. Wu, X. J. Wang, “Convergence rate for randomly weighted sums of random variables and its application”, Teor. Veroyatnost. i Primenen., 69:3 (2024), 611–628; Theory Probab. Appl., 69:3 (2024), 488–502
Citation in format AMSBIB
\Bibitem{WuWan24}
\by Y.~Wu, X.~J.~Wang
\paper Convergence rate for randomly weighted
sums of random variables and its application
\jour Teor. Veroyatnost. i Primenen.
\yr 2024
\vol 69
\issue 3
\pages 611--628
\mathnet{http://mi.mathnet.ru/tvp5551}
\crossref{https://doi.org/10.4213/tvp5551}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4914718}
\transl
\jour Theory Probab. Appl.
\yr 2024
\vol 69
\issue 3
\pages 488--502
\crossref{https://doi.org/10.1137/S0040585X97T992057}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85208924604}
Linking options:
  • https://www.mathnet.ru/eng/tvp5551
  • https://doi.org/10.4213/tvp5551
  • https://www.mathnet.ru/eng/tvp/v69/i3/p611
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025