Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2018, Volume 10, Issue 1, Pages 94–114
DOI: https://doi.org/10.13108/2018-10-1-94
(Mi ufa421)
 

This article is cited in 1 scientific paper (total in 1 paper)

On two-sided estimate for norm of Fourier operator

I. A. Shakirov

Naberezhnye Chelny State Pedagogical University, Nizametdinova str. 28, 423806, Naberezhnye Chelny, Russia
References:
Abstract: In the work we study the behavior of Lebesgue constant $L_n$ of the Fourier operator defined in the space of continuous $2\pi$-periodic functions. The known integral representations expressed in terms of the improper integrals are too cumbersome. They are complicated both for theoretical and practical purposes.
We obtain a new integral representation for $L_n$ as a sum of Riemann integrals defined on bounded converging domains. We establish equivalent integral representations and provide strict two-sided estimates for their components. Then we provide a two-sided estimate for the Lebesgue constant. We solve completely the problem on the upper bound of the constant $L_n$. We improve its known lower bound.
Keywords: partial sums of Fourier series, norm of Fourier operator, Lebesgue constant, asymptotic formula, estimate for Lebesgue constant, extremal problem.
Received: 14.07.2016
Bibliographic databases:
Document Type: Article
UDC: 517.518.83
MSC: 34A25, 22E05
Language: English
Original paper language: Russian
Citation: I. A. Shakirov, “On two-sided estimate for norm of Fourier operator”, Ufa Math. J., 10:1 (2018), 94–114
Citation in format AMSBIB
\Bibitem{Sha18}
\by I.~A.~Shakirov
\paper On two-sided estimate for norm of Fourier operator
\jour Ufa Math. J.
\yr 2018
\vol 10
\issue 1
\pages 94--114
\mathnet{http://mi.mathnet.ru/eng/ufa421}
\crossref{https://doi.org/10.13108/2018-10-1-94}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000432413800008}
\elib{https://elibrary.ru/item.asp?id=32705556}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044285311}
Linking options:
  • https://www.mathnet.ru/eng/ufa421
  • https://doi.org/10.13108/2018-10-1-94
  • https://www.mathnet.ru/eng/ufa/v10/i1/p96
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:522
    Russian version PDF:206
    English version PDF:60
    References:90
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025