|
On level sets of norm of generalized resolvent of operators pencils
M. A. Mansouria, A. Khellafab, H. Guebbaia a Laboratoire des Mathématiques Appliquées
et Modélisation, Department of Mathematics,
Université 8 Mai 1945, BP.401, Guelma, 24000, Algeria
b Ecole Nationale Polytechniques de Constantine, Nouvelle Ville of Ali Mendjeli, BP 75, 25000, Constantine, Algeria
Abstract:
We prove that the generalized resolvent operator defined in a Hilbert space cannot remain constant on any open subset of the resolvent set. Under certain conditions we also prove the same result for a complex uniformly convex Banach space. These results extend the known ones.
Keywords:
$\varepsilon$–pseudospectrum, $\varepsilon$–pseudospectrum of operators pencils, generalized spectrum approximation, operator pencil.
Received: 22.12.2023
Citation:
M. A. Mansouri, A. Khellaf, H. Guebbai, “On level sets of norm of generalized resolvent of operators pencils”, Ufa Math. J., 16:3 (2024), 125–133
Linking options:
https://www.mathnet.ru/eng/ufa705https://doi.org/10.13108/2024-16-3-125 https://www.mathnet.ru/eng/ufa/v16/i3/p130
|
|