Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2025, Volume 17, Issue 2, Pages 69–90
DOI: https://doi.org/10.13108/2025-17-2-69
(Mi ufa730)
 

On one method of rational approximations of Riemann — Liouville type integral on segment

P. G. Potseiko, E. A. Rovba

Yanka Kupala State University of Grodno, Ozheshko str. 22, 230023, Grodno, Belarus
References:
Abstract: We study rational approximations of functions defined by a Riemann — Liouville integral on the interval $[-1,1]$ with a density belonging to some classes of continuous functions. As the approximation apparatus, the Riemann — Liouville type integral with a density being a rational Fourier — Chebyshev integral operator serves. We find upper bounds for approximations of the Riemann — Liouville type integral with a bounded density, which depends on the poles and the position of a point in the segment.
As a separate problem we study of approximations of Riemann — Liouville type integrals with a density being a function with a power singularity. We obtain uniform upper bounds for approximations with a certain majorant that depends on the position of a point in a segment. We find an asymptotic expression for this majorant, which depends on the poles of approximating rational function. We study the case, when the poles are some modifications of the Newman parameters. We find optimal values of the parameters, for which the approximations have the greatest decay rate. The rate of best rational approximations by the considered method is higher in comparison with the corresponding polynomial analogues.
Keywords: Riemann — Liouville integral, rational Fourier — Chebyshev integral operator, uniform rational approximation, asymptotic estaimtes, Laplace method.
Funding agency Grant number
ГПНИ "Конвергенция-2020" 20162269
The work is supported by the State Programm of Scientific Researches «Convergence 2020», no. 20162269 (Republich of Belarus).
Received: 05.05.2024
Document Type: Article
UDC: 517.5
MSC: 53A04, 52A40, 52A10
Language: English
Original paper language: Russian
Citation: P. G. Potseiko, E. A. Rovba, “On one method of rational approximations of Riemann — Liouville type integral on segment”, Ufa Math. J., 17:2 (2025), 69–90
Citation in format AMSBIB
\Bibitem{PotRov25}
\by P.~G.~Potseiko, E.~A.~Rovba
\paper On one method of rational approximations of Riemann~---~Liouville type integral on segment
\jour Ufa Math. J.
\yr 2025
\vol 17
\issue 2
\pages 69--90
\mathnet{http://mi.mathnet.ru/eng/ufa730}
\crossref{https://doi.org/10.13108/2025-17-2-69}
Linking options:
  • https://www.mathnet.ru/eng/ufa730
  • https://doi.org/10.13108/2025-17-2-69
  • https://www.mathnet.ru/eng/ufa/v17/i2/p71
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025