Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2016, Volume 2, Issue 1, Pages 3–8
DOI: https://doi.org/10.15826/umj.2016.1.001
(Mi umj10)
 

On an extremal problem for polynomials with fixed mean value

Alexander G. Babenkoab

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
b Institute of Mathematics and Computer Science, Ural Federal University, Ekaterinburg, Russia
References:
Abstract: Let $T_n^+$ be the set of nonnegative trigonometric polynomials $\tau_n$ of degree $n$ that are strictly positive at zero. For $0\le\alpha\le2\pi/(n+2),$ we find the minimum of the mean value of polynomial $(\cos\alpha-\cos{x})\tau_n(x)/\tau_n(0)$ over $\tau_n\in{T_n^+}$ on the period $[-\pi,\pi).$
The paper was originally published in a hard accessible collection of articles Approximation of Functions by Polynomials and Splines (The Ural Scientific Center of the Academy of Sciences of the USSR, Sverdlovsk, 1985), p. 15–22 (in Russian).
Keywords: Trigonometric polynomials, Extremal problem.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Alexander G. Babenko, “On an extremal problem for polynomials with fixed mean value”, Ural Math. J., 2:1 (2016), 3–8
Citation in format AMSBIB
\Bibitem{Bab16}
\by Alexander~G.~Babenko
\paper On an extremal problem for polynomials with fixed mean value
\jour Ural Math. J.
\yr 2016
\vol 2
\issue 1
\pages 3--8
\mathnet{http://mi.mathnet.ru/umj10}
\crossref{https://doi.org/10.15826/umj.2016.1.001}
\zmath{https://zbmath.org/?q=an:1413.42001}
\elib{https://elibrary.ru/item.asp?id=26501478}
Linking options:
  • https://www.mathnet.ru/eng/umj10
  • https://www.mathnet.ru/eng/umj/v2/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025