Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2019, Volume 5, Issue 2, Pages 31–54
DOI: https://doi.org/10.15826/umj.2019.2.004
(Mi umj101)
 

Local extensions with imperfect residue field

Akram Lbekkouri

10507 Casa-Bandoeng, 20002 Casablanca, Morocco
References:
Abstract: The paper deals with some aspects of general local fields and tries to elucidate some obscure facts. Indeed, several questions remain open, in this domain of research, and literature is getting scarce. Broadly speaking, we present a full description of the absolute Galois group in all cases with answers on the solvability, prosolvability and procyclicity. Furthermore, we give a result that makes “some” generalization to Abhyankar’s Lemma in local case. Half-way a short section, containing a view of some future research loosely discussed, presents an attempt in the development of the theory. An Annexe elucidate several important points, concerning Hilbert’s theory.
Keywords: Inertia group, Abhyankar’s Lemma, Imperfect residue field, Weakly unramified, Solvability, Monogenity.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Akram Lbekkouri, “Local extensions with imperfect residue field”, Ural Math. J., 5:2 (2019), 31–54
Citation in format AMSBIB
\Bibitem{Lbe19}
\by Akram Lbekkouri
\paper Local extensions with imperfect residue field
\jour Ural Math. J.
\yr 2019
\vol 5
\issue 2
\pages 31--54
\mathnet{http://mi.mathnet.ru/umj101}
\crossref{https://doi.org/10.15826/umj.2019.2.004}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=MR4054649}
\zmath{https://zbmath.org/?q=an:1443.11244}
\elib{https://elibrary.ru/item.asp?id=41672792}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078765129}
Linking options:
  • https://www.mathnet.ru/eng/umj101
  • https://www.mathnet.ru/eng/umj/v5/i2/p31
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025