Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2024, Volume 10, Issue 1, Pages 84–98
DOI: https://doi.org/10.15826/umj.2024.1.008
(Mi umj223)
 

Artinian $\mathbf{M}$-complete, $\mathbf{M}$-reduced, and minimally $\mathbf{M}$-complete associative rings

Leonid M. Martynova, Tatiana V. Pavlovab

a Omsk State Transport University
b Tyumen State University
References:
Abstract: In 1996, the first author defined analogs of the concepts of complete (divisible), reduced, and periodic abelian groups, well-known in the theory of abelian groups, for arbitrary varieties of algebras. In 2021, the first author proposed a modification of the concepts of completeness and reducibility, which is more natural in the case of associative rings. The paper studies the modification of these concepts for associative rings. Artinian $\mathbf{M}$-complete, $\mathbf{M}$-reduced rings, and minimally $\mathbf{M}$-complete associative nilpotent rings, simple rings with unity, and finite rings are characterized.
Keywords: Associative ring, Artinian ring, Finite ring, Complete ring, Reduced ring
Bibliographic databases:
Document Type: Article
Language: English
Citation: Leonid M. Martynov, Tatiana V. Pavlova, “Artinian $\mathbf{M}$-complete, $\mathbf{M}$-reduced, and minimally $\mathbf{M}$-complete associative rings”, Ural Math. J., 10:1 (2024), 84–98
Citation in format AMSBIB
\Bibitem{MarPav24}
\by Leonid~M.~Martynov, Tatiana~V.~Pavlova
\paper Artinian $\mathbf{M}$-complete, $\mathbf{M}$-reduced, and minimally $\mathbf{M}$-complete associative rings
\jour Ural Math. J.
\yr 2024
\vol 10
\issue 1
\pages 84--98
\mathnet{http://mi.mathnet.ru/umj223}
\crossref{https://doi.org/10.15826/umj.2024.1.008}
\elib{https://elibrary.ru/item.asp?id=68586407}
\edn{https://elibrary.ru/IVZODR}
Linking options:
  • https://www.mathnet.ru/eng/umj223
  • https://www.mathnet.ru/eng/umj/v10/i1/p84
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025